Preface

Thank you for choosing FD200 series variable-frequency drive (VFD).
Version: V1.0
FD200 series dexterous VFD is newly developed by Windsun Science \& Technology Co., Ltd. It integrates torque control and speed control, and can achieve efficient driving of synchronous and asynchronous motors.

The product adopted leading vector control technology, enhanced the reliability and environmental adaptability, and fully considered the industry application needs, developed rich functional extension cards, makes the application more flexible.

To meet the diverse application needs of users, the FD200 series VFD can be configured with an extension card, it can be PG card, or communication card, or I/O expansion card.

The PG card supports various encoders such as incremental and resolver. It adopts digital filtering technology and has better electromagnetic compatibility characteristics, achieving stable reception of encoder signals over long distances; And it also has an encoder disconnection detection function to avoid the system faults caused by disconnection.

The communication cards can support different protocols, such as CAN, Profinet, Profibus-DP, Ethernet, etc., with better industrial control system compatibility;

The FD200 series frequency converters have a high power density design and adopt a book style design structure, saving users more installation space; Through the overall design of electromagnetic compatibility, meet the environmental requirements of users for low noise and low electromagnetic interference in application areas;

The FD200 product adopts an independent air duct design and thickened circuit board coating, which can adapt to harsh operating conditions such as harsh power grids, high temperatures, high humidity, and dust pollution, greatly improving product reliability, ensuring long-term reliable operation of the equipment, and reducing equipment maintenance investment.

Contents

Preface i
Contents ii
1 Safety precautions 1
1.1 What this chapter contains 1
1.2 Safety definition 1
1.3 Warning symbols. 1
1.4 Safety guidelines 2
2 Quick startup 5
2.1 What this chapter contains 5
2.2 Unpacking inspection 5
2.3 Checking before applying 5
2.4 Environment. 5
2.5 Installation confirmation 6
2.6 Basic commissioning 6
3 Product overview 7
3.1 What this chapter contains 7
3.2 Basic principle 7
3.3 Product specifications 8
3.4 Product nameplate 10
3.5 Model designation code 10
3.6 Product ratings 11
3.7 Structure diagram 12
4 Installation guidelines 14
4.1 What this chapter contains 14
4.2 Mechanical installation 14
4.3 Main circuit standard wiring 20
4.4 Control circuit standard wiring 23
4.5 Wiring protection 26
5 Basic operation guidelines 28
5.1 What this chapter contains 28
5.2 Keypad introduction 28
5.3 Keypad display 30
5.4 Keypad operation 31
5.5 Basic operations 33
6 Function parameter list. 113
6.1 What this chapter contains 113
6.2 Function parameter list. 113
7 Troubleshooting 235
7．1 What this chapter contains 235
7．2 Indications of alarms and faults 235
7．3 Fault reset． 235
7．4 Fault history 235
7．5 VFD faults and solutions 235
7．6 Analysis on common faults 241
7．7 Countermeasures on common interference 247
8 Quality commitment 252
8．1 Warranty period 252
8．2 After sales service instructions 252
8．3 Services 252
8.4 responsibilities 253
9 Maintenance 254
9．1 What this chapter contains 254
9．2 Periodical inspection 254
9．3 Cooling fan 256
9．4 Capacitor 257
9．5 Power cable 258
10 Communication． 259
10．1 What this chapter contains 259
10．2 Modbus protocol introduction 259
10．3 Application 259
10．4 RTU command code and communication data 265
10．5 Common communication faults 283
Appendix A Technical data 284
A． 1 What this chapter contains 284
A． 2 Derated application 284
A． 3 Grid specifications 285
A． 4 Motor connection data 285
A． 5 Application standards 285
A． 6 EMC regulations 286
Appendix B Dimension drawings 288
B． 1 What this chapter contains 288
B． 2 Keypad structure 288
B． 3 VFD structure 错误！未定义书签。
B． 4 VFD structure 289
Appendix C Optional peripheral accessories 292
C． 1 What this chapter contains 292
C． 2 Wiring of peripheral accessories 292
C． 3 Power supply 293
C. 4 Cables 293
C. 5 Breaker and electromagnetic contactor 297
C. 6 Reactors 298
C. 7 Filters 300
C. 8 Braking system 302

1 Safety precautions

1.1 What this chapter contains

Read this manual carefully and follow all safety precautions before moving, installing, operating, and servicing the VFD. If these safety precautions are ignored, physical injury or death may occur, or damage may occur to the equipment.

If any physical injury or death or damage to the equipment occur due to neglect of the safety precautions in the manual, our company will not be responsible for any damages and we are not legally bound in any manner.

1.2 Safety definition

Danger: Severe personal injury or even death can result if related requirements are not followed.
Warning: Personal injury or equipment damage can result if related requirements are not followed.
Note: Actions taken to ensure proper running.
Trained and qualified professionals: People working on the VFD must have received professional electrical and safety training and obtained the certificates, and must be familiar with all steps and requirements of VFD installing, commissioning, running, and maintaining and capable to prevent any emergencies.

1.3 Warning symbols

Warnings caution you about conditions which can result in serious injury or death and/or damage to the equipment, and advice on how to avoid the danger. Following warning symbols are used in this manual.

Symbols	Name	Instruction	Abbreviation
Danger	Danger	Serious physical injury or even death may occur if related requirements are not followed	4
Warning	Warning	Physical injury or damage to the equipment may occur if related requirements are not followed	4
	Electrostatic discharge	The PCBA may be damaged if related requirements are not followed	A
	Hot sides	The VFD base may become hot. Do not touch.	IIII
	Electric shock	As high voltage still presents in the bus capacitor after power off, wait for at least five minutes (or $15 \mathrm{~min} / 25$	$\text { 公 } 5 \mathrm{~min}$

Symbols	Name	Instruction	Abbreviation
		min, depending on the warning symbols on the machine) after power off to prevent electric shock	
Note	Read manual	Read the operation manual before operating on the equipment	Note

1.4 Safety guidelines

4	\triangleleft Only trained and qualified electricians are allowed to carry out related operations. « Do not perform wiring, inspection or component replacement when power supply is applied. Ensure all the input power supplies are disconnected before wiring and inspection, and wait for at least the time designated on the VFD or until the DC bus voltage is less than 36V. The minimum waiting time is listed in the table below.	
	VFD model	Minimum waiting time
	$380 \mathrm{~V} 1.5 \mathrm{~kW}-110 \mathrm{~kW}$	5 min
	380 V 132kW-315kW	15 min
	380 V 355 kW and above	25 min
!	ъ Do not refit the VFD unless authorized; otherwise, fire, electric shock or other injuries may occur.	
(III)	\diamond The base of the radiator may become hot during running. Do not touch to avoid hurt.	
A	\diamond The electrical parts and components inside the VFD are electrostatic. Take measures to prevent electrostatic discharge during related operation.	

1.4.1 Delivery and installation

	s Install the VFD on fire-retardant material and keep the VFD away from combustible materials.
\diamond Connect the optional braking parts (braking resistors, braking units or	
feedback units) according to the wiring diagram.	
\diamond Do not operate on a damaged or incomplete VFD.	
\diamond Do not touch the VFD with wet items or body parts; otherwise, electric shock	
may occur.	

\triangleleft Do not push sideways during handling.
\diamond Prevent dumping to both sides during handling.

Note:

\diamond Select appropriate tools for delivery and installation to ensure a safe and proper running of the VFD and avoid physical injury or death. To ensure physical safety, the installation staff should take mechanical protective measures like wearing safety shoes and working uniforms
\diamond Protect the VFD against physical shock or vibration during delivery and installation.
\diamond Do not carry the VFD by its front cover only as the cover may fall off.
\diamond The installation site must be away from children and other public places.
\diamond When the installation site altitude exceeds 1000 m , derate by 1% for every increase of 100 m ; when the installation site altitude exceeds 3000 m , consult local FGI dealer or office.
\diamond Use the VFD in proper environment. (For details, refer to "4.2.1 Installation environment".)
\diamond Prevent the screws, cables, and other conductive parts from falling into the VFD.
\diamond As leakage current of the VFD during running may exceed 3.5 mA , ground properly and ensure the grounding resistance is less than 10Ω. The conductivity of PE grounding conductor is the same as that of the phase conductor (with the same cross sectional area).
$\diamond R, S$ and T are the power input terminals, and U, V and W are output motor terminals. Connect the input power cables and motor cables properly; otherwise, damage to the VFD may occur.

1.4.2 Commissioning and running

	\diamond Disconnect all power sources applied to the VFD before terminal wiring, and wait for at least the time designated on the VFD after disconnecting the power sources. \diamond High voltage presents inside the VFD during running. Do not carry out any operation on the VFD during running except for keypad setup. For products at voltage levels of 5 or 6, the control terminals form extra-low voltage circuits. Therefore, you need to prevent the control terminals from connecting to accessible terminals of other devices. \diamond The VFD may start up by itself when F10.31=1. Do not get close to the VFD and motor. \diamond The VFD cannot be used as "Emergency-stop device". \diamond The VFD cannot act as an emergency brake for the motor; it is a must to install mechanical brake device. \diamond During driving a permanent magnet SM, besides above-mentioned items, the following work must be done before installation and maintenance: 1. Disconnect all the input power sources including main power and control

| power.
 2. Ensure the permanent-magnet SM has been stopped, and the voltage on
 output end of the VFD is lower than 36 V . |
| :--- | :--- |
| 3. After the permanent-magnet SM is stopped, wait for at least the time |
| designated on the VFD, and ensure the voltage between + and - is lower |
| than 36V. |
| 4. During operation, it is a must to ensure the permanent-magnet SM cannot |
| run again by the action of external load; it is recommended to install |
| effective external brake device or disconnect the direct electrical connection |
| between permanent-magnet SM and the VFD. |

Note:

Do not switch on or switch off input power sources of the VFD frequently.

2 If the VFD has been stored for a long time without being used, set the capacitance (refer to "Quality commitment

8.1 Warranty period

Standard warranty: 18 months (based on product serial number)

During the warranty period, the repair or replacement of parts will not affect the overall warranty period of the original product. If the warranty period of the original product is less than 3 months, the repaired or replaced parts will still have the warranty period of 3 months.

8.2 After sales service instructions

Thank you very much for choosing FGI products. Fd300 series adopts the most advanced transmission technology and is manufactured under the strict and advanced production management control. In case of product failure, FGI Science \& Technology Co., Ltd. and its office will wholeheartedly provide you with timely and high-quality services. Welcome to call the 365X24 hour national unified service hotline: 400-600-3199.

8.3 Services

We promise that, our company (hereinafter referred to as "the manufacturer") conducts free maintenance and repairing to the product that has any fault or damage under the normal operation conditions to the customers from the purchase date.

1. This product is guaranteed free of charge for 18 months from the date of purchase from the manufacturer (except the non-standard machine products).
2. This product has paid lifelong service from the date of purchase from the manufacturer.
3. Even within 18 months, maintenance should also be charged in case of the following situations:
(1) Damages incurred to the inverter due to mis-operations which are not in compliance with "Operation Manual"; being used, set the capacitance (refer to "Quality commitment
(2) Damages incurred to the inverter due to the unauthorized repairing and reconstruction;
(3) Damage incurred to the inverter due to mis-operations which are not in the standard application range;
(4) Abnormal aging or damage incurred to the inverter due to bad usage environment;
(5) Damage incurred to the inverter due to earthquake, fire, flood, thunder, abnormal voltage and other damage caused by the force majeure;
(6) Damage or lost incurred to the inverter due to improper transportation (the customer can select the transportation, but our company can assist for the shipment procedures).
4. Free maintain and repairing won, t be given under the following circumstance:
(1) The brand, trademark, serial number and name plate designated in the product have been changed or destroyed and cannot be read;
(2) The customer did not pay at the Purchase and Sales Contract signed by both parties;
(3) The customer concealed the mis-operation in installation, configuration, operation, maintenance, and other procedures.

8.4 Responsibilities

No matter from the perspective of contract, warranty period, negligence, civil tort, strict liability or any other point of view, FGI and its suppliers and distributors shall not be responsible for the following special, indirect and secondary losses caused by the use of equipment. This includes but is not limited to the loss of profit and income, the loss of the use of supplied equipment and related equipment, the cost of funds, the cost of substitute equipment, tool fees and service fees, the cost of downtime, delays, and the loss of the buyer's customers or any third party. In addition, unless the user can provide strong evidence, FGI and its suppliers will not be responsible for some allegations, such as problems caused using unqualified raw materials, wrong design, or non-standard production.

If you have any questions about FGI VFDs, please contact FGI company or its office. Technical data, information and specifications are the latest materials at the time of publication. FGI reserves the right to make changes without prior notice.
» Maintenance" and carry out inspection and pilot run on the VFD before use.
\diamond Close the front cover before running; otherwise, electric shock may occur.

1.4.3 Maintenance and component replacement

| \& Only trained and qualified professionals are allowed to perform maintenance, |
| :---: | :---: | :---: |
| inspection, and component replacement on the VFD. |
| \diamond Disconnect all the power sources applied to the VFD before terminal wiring, and |
| wait for at least the time designated on the VFD after disconnecting the power |
| sources. |
| \diamond Take measures to prevent screws, cables and other conductive matters from |

Note:

\triangleleft Use proper torque to tighten the screws.
\triangleleft Keep the VFD and its parts and components away from combustible materials during maintenance and component replacement.
\triangleleft Do not carry out insulation voltage-endurance test on the VFD, or measure the control circuits of the VFD with megameter.
\triangleleft Take proper anti-static measures on the VFD and its internal parts during maintenance and component replacement.

1.4.4 What to do after scrapping

!	\diamond The heavy metals inside the VFD should be treated as industrial effluent.
\&	When the life cycle ends, the product should enter the recycling system. Dispose of it separately at an appropriate collection point but not place it in the normal waste stream.

3 Quick startup

3.1 What this chapter contains

This chapter introduces the basic installation and commissioning rules that you need to follow to realize quick installation and commissioning.

3.2 Unpacking inspection

Check the following after receiving the product.

- Whether the packing box is damaged or dampened.
- Whether the model identifier on the exterior surface of the packing box is consistent with the purchased model.
- Whether the interior surface of the packing box is abnormal, for example, in wet condition, or whether the enclosure of the VFD is damaged or cracked.
- Whether the VFD nameplate is consistent with the model identifier on the exterior surface of the packing box.
- Whether the accessories (including the manual and keypad) inside the packing box are complete.

If any problems are found, contact the local dealer or FGI office.

3.3 Checking before applying

Check the following before applying the VFD.

- Check the load type to verify that there is no overload of the VFD during work and check whether the power class of the VFD needs to be increased.
- Check whether the actual running current of the motor is less than the rated current of the VFD.
- Check whether the control accuracy required by the load is the same of the VFD.
- Check whether the grid voltage is consistent with the rated voltage of the VFD.
- Check whether extension card is needed for selecting functions.

3.4 Environment

Check the following before the actual installation and use:
Note: For a cabinet-built VFD, the ambient temperature is the air temperature inside the cabinet.

- Check whether the ambient temperature of the VFD exceeds $40^{\circ} \mathrm{C}$. If it exceeds $40^{\circ} \mathrm{C}$, derate 1% for every increase of $1^{\circ} \mathrm{C}$. It is not recommended to use the VFD if the ambient temperature exceeds $50^{\circ} \mathrm{C}$.
- Check whether the ambient temperature of the VFD in actual use is lower than $-10^{\circ} \mathrm{C}$. If yes, use heating facilities.
- When the altitude exceeds 1000 m , derate by 1% for every increase of 100 m . When the altitude exceeds 3000 m , please contact the local FGI dealer or office for details.
- Check whether the humidity of the actual usage site exceeds 90% and condensation
occurs. If yes, take additional protective measures.
- Check whether the actual use site may be exposed to direct sunlight or may have the chance of ingress of foreign objects. If yes, take additional protective measures.
- Check whether there is dust, explosive gas, or flammable gas in the actual use site. If yes, take additional protective measures.

3.5 Installation confirmation

Check the following after the VFD installation:

- Check whether the load ranges of the input power cable and motor cable meet the actual load requirement.
- Check whether correct accessories are selected for the VFD, the accessories are correctly and properly installed, and the installation cables meet the requirements of all components (including the reactor, input filter, output reactor, output filter, DC reactor, braking unit and braking resistor).
- Check whether the VFD is installed on non-flammable materials and the heat-radiating accessories (such as the reactor) are away from flammable materials.
- Check whether all control cables and power cables are run separately and the routing complies with EMC requirement.
- Check whether all grounding systems are properly grounded according to the requirements of the VFD.
- Check whether all the installation clearances of the VFD meet the requirements in the operation manual.
- Check whether the installation conforms to the instructions in the operation manual. It is recommended that the VFD be installed uprightly.
- Check whether the external connection terminals of the VFD are tightly fastened and the torque is appropriate.
- Check whether there are screws, cables, or other conductive items left in the VFD. If yes, get them out.

3.6 Basic commissioning

Complete the basic commissioning as follows before the actual use of the VFD:

- According to the actual motor parameters, select the motor type, set motor parameters, and select the VFD control mode.
- Autotune. If possible, de-couple the VFD from the motor load to start dynamic autotuning. If the VFD cannot be de-coupled from the load, perform static autotuning.
- Adjust the ACC/DEC time according to the actual work condition of the load.
- Perform device commissioning by means of jogging and check whether the motor rotational direction is correct. If not, change the rotation direction by swapping any two phase wires of the motor.
- Set all control parameters and then operate.

4 Product overview

4.1 What this chapter contains

This chapter mainly introduces the operation principles, product features, layouts, nameplates, and model designation rules.

4.2 Basic principle

The VFD is used to control asynchronous AC induction motors and permanent-magnet synchronous motors. The figure below shows the main circuit diagram of the VFD. The rectifier converts 3PH AC voltage into DC voltage, and the capacitor bank of intermediate circuit stabilizes the DC voltage. The VFD converts DC voltage into the AC voltage used by AC motor. When the circuit voltage exceeds the maximum limit value, external braking resistor will be connected to intermediate DC circuit to consume the feedback energy.

Figure 4.1 Main circuit diagram

Note:

- Models with built-in braking units can be equipped with external braking resistors, which are optional accessories.

4.3 Product specifications

Function description		Specification
Power input	Input voltage (V)	AC 1PH 220V (-15\%) ~240V (+10\%) AC 3PH 220V (-15\%) ~240V (+10\%) AC 3PH 380V (-15\%) ~440V (+10\%)
	Voltage tolerance	-15\% $+10 \%$
	Input current (A)	Refer to "Product ratings".
	Input frequency (Hz)	50 Hz or 60 Hz , allowable range: $47-63 \mathrm{~Hz}$
Power output	Output voltage (V)	0-Input voltage
	Output current (A)	Refer to "Product ratings".
	Output power (kW)	Refer to "Product ratings".
	Output frequency (Hz)	0-400Hz
Technical control performance	Control mode	Space voltage vector control, sensorless vector control (SVC), and vector control with sensor feedback (FVC)
	Motor type	Asynchronous motor (AM) and permanent magnetic synchronous motor (SM)
	Speed regulation ratio	For AM1: 1:200 (SVC); for SM1, 1:20 (SVC); 1:1000 (FVC)
	Speed control precision	$\pm 0.2 \%$ (SVC); $\pm 0.02 \%$ (FVC)
	Speed fluctuation	$\pm 0.3 \%$ (SVC)
	Torque response	<20ms (SVC); < 10 ms (FVC)
	Torque control precision	10\% (SVC); 5\% (FVC)
	Starting torque	For AMs: $0.25 \mathrm{~Hz} / 150 \%$ (SVC) For SMs: $2.5 \mathrm{~Hz} / 150 \%$ (SVC) 0Hz/200\% (FVC)
	Overload capacity	150% for 1 min (every 5 mins) ; 180\% for 10s; 200\% for 1 s
Running	Frequency setting	Settings can be implemented through digital, analog,

Function description		Specification
control performance	method	pulse frequency, multi-step speed running, simple PLC, PID communication, communication and so on. Settings can be combined and the setting channels can be switched.
	Automatic voltage regulation	The output voltage can be kept constant although the grid voltage changes.
	Fault protection	More than 30 protection functions, such as protection against overcurrent, overvoltage, undervoltage, overtemperature, phase loss, and overload
	Speed tracking restart	Used to implement impact-free smooth startup for rotating motors
Peripheral interface	Terminal analog input resolution	No more than 20 mV
	Terminal digital input resolution	No more than 2 ms
	Analog input	2 channels: Al1: $0(2)-10 \mathrm{~V} / 0(4)-20 \mathrm{~mA}$; Al2: -10-10V
	Analog output	2 channels; $\mathrm{AO} 1: 0(2)-10 \mathrm{~V} / 0(4)-20 \mathrm{~mA}$; $\mathrm{AO} 2: 0 \sim 10 \mathrm{~V}$
	Digital input	4 channels regular input; max. frequency: 1 kHz ; internal impedance: $3.3 \mathrm{k} \Omega$ 1 channel high-speed input; max. frequency: 50 kHz ; supporting quadrature encoder input; with speed measurement function
	Digital output	1 high-speed pulse output; max. frequency: 50 kHz 1 DO terminal open collector output
	Relay output	1 programmable relay outputs T1A: NO; T1B: NC; T1C: common Contact capacity: 3A/AC250V, 1A/DC30V
	Extended interfaces	1 extended interface: SLOT1 Supporting PG cards, communication cards, I/O cards and so on
Other	Mounting method	Wall mounting, Guide rail (optional below $380 \mathrm{~V} / 5.5 \mathrm{KW}$), side mounted (optional)
	Temperature of running environment	$-10-+50^{\circ} \mathrm{C}$; derating is required if the ambient temperature exceeds $40^{\circ} \mathrm{C}$
	Ingress protection rating	IP20
	Pollution degree	Degree 2

Function description		Specification
	Vibration	The max. amplitude of vibration should not exceed $5.9 \mathrm{~m} / \mathrm{s} 2(0.6 \mathrm{~g})$
	Cooling method	Forced air cooling
	Braking unit	Standard built-in braking units.
	EMC filter	The transmission of the VFD meets the IEC/EN 61800-3 C3 requirements. When optional filters are connected externally, the transmission of the VFD can meet the IEC/EN 61800-3 C2 requirements. Note: Comply with the EMC requirements and the technical requirements for the motors and motor cables in the appendix in the manual.

4.4 Product nameplate

FGI
MODEL: FD200-004G-4-B
INPUT: AC 3PH 380V 50/60Hz
OUTPUT: AC 3PH 380V 0-600Hz 9.5A
S / N :

FGI SCIENCE AND TECHNOLOGY CO., LTD.

Figure 4.5 Product nameplate

Note:

- This is a nameplate example of a standard VFD product. The CE/TUV/IF02 marking on the top right will be marked according to actual certification conditions.

4.5 Model designation code

A model designation code contains product information. You can find the model designation code on the VFD nameplate and simplified nameplate.

Figure 4.6 Model description

Field	No.	Description	Content
Abbreviation of product series	(1)	Abbreviation of product series	FD200: FD200 series dexterous VFD
Rated power	(2)	Power range + load type	004G: Constant torque load 4kW
Voltage class	(3)	Voltage class	4: AC 3PH 380V $(-15 \%) \sim 440 \mathrm{~V}(+10 \%)$ 2: AC 3PH $220 \mathrm{~V}(-15 \%) \sim 240 \mathrm{~V}(+10 \%)$ S2: AC 1PH $220 \mathrm{~V}(-15 \%) \sim 240 \mathrm{~V}(+10 \%)$
DBU configuration	(4)	Built-in DBU	B: Built-in DBU
Note: 380 V 37 kW and below models standard built-in DBU. $380 \mathrm{~V} 45 \mathrm{~kW} \sim 110 \mathrm{~kW}$ models are standard configuration without DBU (can optional built-in DBU, select -B model, for example, FD300-45G/55P-4-B.)			

4.6 Product ratings

Model no.	Voltage	Output power (kW)	Input current (A)	Output current (A)
FD200-0R4G-S2-B	$\begin{gathered} \text { AC } 1 \mathrm{PH} \\ 220 \mathrm{~V} \end{gathered}$	0.4	6.5	2.4
FD200-0R7G-S2-B		0.75	9.2	4.5
FD200-1R5G-S2-B		1.5	15.5	7.0
FD200-2R2G-S2-B		2.2	24	10
FD200-0R4G-2-B	$\begin{gathered} \text { AC } 3 \text { PH } \\ 220 \mathrm{~V} \end{gathered}$	0.4	3.7	2.4
FD200-0R7G-2-B		0.75	5.0	4.5
FD200-1R5G-2-B		1.5	7.8	7.0
FD200-2R2G-2-B		2.2	11	10
FD200-004G-2-B		4	17	16
FD200-5R5G-2-B		5	21	20
FD200-7R5G-2-B		7.5	31	30
FD200-1R5G-4-B	$\begin{gathered} \text { AC 3PH } \\ 380 \mathrm{~V} \end{gathered}$	1.5	5.0	3.7
FD200-2R2G-4-B		2.2	5.8	5.5
FD200-004G-4-B		4	13.5	9.5
FD200-5R5G-4-B		5.5	19.5	14
FD200-7R5G-4-B		7.5	25	18.5
FD200-011G-4-B		11	32	25
FD200-015G-4-B		15	40	32

For details, refer to "9 Quality commitment

Model no.	Voltage	Output power (kW)	Input current (A)	Output current (A)
FD200-018G-4-B		18.5	47	38

Note:

- The rated output current is the output current corresponding to 380 V output voltage.
- Within the allowable input voltage range, the output current and power cannot exceed the rated output current and power.

4.7 Structure diagram

The VFD structure is shown in the following figure (using the 380 V 5.5 kW VFD model as an example):

Figure 4.7 Structure diagram

No.	Item	Description
1	Extension card	Optional
2	Cover	Used to protect internal components.
3	Enclosure	Used to protect internal components.
4	Sealing ring	Air duct seal
		5 For details, refer to "9 Quality COMmitment
	Cooling fan	
		8.1 Warranty period

No.	Item	Description
		case of the following situations: (1) Damages incurred to the inverter due to mis-operations which are not in compliance with "Operation Manual"; (2) Damages incurred to the inverter due to the unauthorized repairing and reconstruction; (3) Damage incurred to the inverter due to mis-operations which are not in the standard application range; (4) Abnormal aging or damage incurred to the inverter due to bad usage environment; (5) Damage incurred to the inverter due to earthquake, fire, flood, thunder, abnormal voltage and other damage caused by the force majeure; (6) Damage or lost incurred to the inverter due to improper transportation (the customer can select the transportation, but our company can assist for the shipment procedures). 4. Free maintain and repairing won, t be given under the following circumstance: (1) The brand, trademark, serial number and name plate designated in the product have been changed or destroyed and cannot be read; (2) The customer did not pay at the Purchase and Sales Contract signed by both parties; (3) The customer concealed the mis-operation in installation, configuration, operation, maintenance, and other procedures. 8.4 Responsibilities No matter from the perspective of contract, warranty period, negligence, civil tort, strict liability or any other point of view, FGI and its suppliers and distributors shall not be responsible for the following special, indirect and secondary losses caused by the use of equipment. This includes but is not limited to the loss of profit and income, the loss of the use of supplied equipment and related equipment, the cost of funds, the cost of substitute equipment, tool fees and service fees, the cost of downtime, delays, and the loss of the buyer's customers or any third party. In addition, unless the user can provide strong evidence, FGI and its suppliers will not be

No.	Item	Description
		responsible for some allegations, such as problems caused using unqualified raw materials, wrong design, or non-standard production. If you have any questions about FGI VFDs, please contact FGI company or its office. Technical data, information and specifications are the latest materials at the time of publication. FGI reserves the right to make changes without prior notice. MaintenanCe".
6	Fan cover	Protect the fan
7	Guide rail mounting bracket	For installation
8	Guide rail	For installation
9		
10	Power board	Power converter
11		
12	Heat sink	IGBT heat dispassion
13	Keypad board	Human machine interface

6 Installation guidelines

6.1 What this chapter contains

This chapter introduces the mechanical and electrical installations of the VFD.

A.	\diamond Only trained and qualified professionals are allowed to carry out the operations mentioned in this chapter. Please carry out operations according to instructions presented in Safety precautions. Ignoring these safety precautions may lead to physical injury or death, or equipment damage. \diamond Ensure the VFD power is disconnected before installation. If the VFD has been powered on, disconnect the VFD and wait for at least the time designated on the VFD, and ensure the POWER indicator is off. Users are recommended to use a multimeter to check and ensure the VFD DC bus voltage is below 36V. \diamond Installation must be designed and done according to applicable local laws and regulations. FGI does not assume any liability whatsoever for any installation which breaches local laws and regulations. If recommendations given by FGI are not followed, the VFD may experience problems that the warranty does not cover.

6.2 Mechanical installation

6.2.1 Installation environment

Installation environment is essential for the VFD to operate at its best in the long run. The installation environment of the VFD should meet the following requirements.

Environment	Condition
Installation site	Indoors
Ambient temperature	$\triangleleft-10-+50^{\circ} \mathrm{C}$; \diamond When the ambient temperature exceeds $40^{\circ} \mathrm{C}$, derate 1% for every additional $1^{\circ} \mathrm{C}$; $\diamond \mathrm{It}$ is not recommended to use the VFD when the ambient temperature is above $50^{\circ} \mathrm{C}$; » In order to improve reliability, do not use the VFD in cases where the temperature changes rapidly; \diamond When the VFD is used in a closed space e.g., control cabinet, use cooling fan or air conditioner to prevent internal temperature from exceeding the temperature required; \diamond When the temperature is too low, if restart an VFD which has been idled for a long time, it is required to install external heating device before use to eliminate the freeze inside the VFD, failing to do so may cause damage

Environment	Condition
	to the VFD.
Humidity	$\diamond \quad$ The relative humidity (RH) of the air is less than 90%; \triangleleft Condensation is not allowed; » The max RH cannot exceed 60% in the environment where there are corrosive gases.
Storage temperature	$-30-+60^{\circ} \mathrm{C}$
Running environment	The installation site should meet the following requirements. \diamond Away from electromagnetic radiation sources; ৯ Away from oil mist, corrosive gases, and combustible gases; « Ensure foreign object like metal powder, dust, oil, and water will not fall into the VFD (do not install the VFD onto combustible object like wood); A Away from radioactive substance and combustible objects; \diamond Away from harmful gases and liquids; \& Low salt content; \diamond No direct sunlight
Altitude	Below 1000m; ঝ When the altitude exceeds 1000 m , derate 1% for every additional 100 m ; When the altitude exceeds 3000 m , please contact the local FGI dealer or office for details
Vibration	The max. amplitude of vibration should not exceed $5.8 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{~g})$
Installation direction	Install the VFD vertically to ensure good heat dissipation effect

Note:

- The VFD must be installed in a clean and well-ventilated environment based on the IP level.
- The cooling air must be clean enough and free from corrosive gases and conductive dust.

6.2.2 Installation direction

The VFD can be installed on the wall or in a cabinet.
The VFD must be installed vertically. Check the installation position according to following requirements. Refer to o Appendix B Dimension drawings.

OK

NG

NG

A. Vertical installation

B. Horizontal installation

C. Transverse installation

Figure 6.1 Installation direction of the VFD

6.2.3 Installation mode

According to the overall dimensions, it supports wall mounting, rail mounting, and side by side mounting.

Figure 6.2 Installation mode
The installation steps are as follows:
(1) Mark the position of the installation hole. Refer to appendix for the position of installation hole;
(2) Mount the screws or bolts onto the designated position;
(3) Put the VFD on the wall;
(4) Tighten the fixing screws on the wall.

6.2.4 Single-unit installation

Figure 6.3 Single-unit installation
Note: The min. dimension of B and C is 100 mm .

6.2.5 Multiple-unit installation

Figure 6.4 Side by side mounting

Note:

- When you install VFDs in different sizes, align the top of each VFD before installation for the convenience of future maintenance.
- The minimum size of the spacing baffle or wall on the upper and lower sides is 100 mm .

6.2.6 Vertical installation

Figure 6.5 Vertical installation
Note: During vertical installation, the windshield must be added, otherwise it will cause the interaction between multiple VFDs and poor heat dissipation.

6.2.7 Tilted installation

Figure 6.6 Tilted installation
Note: During tilted installation, it must be ensured that the air inlet duct and air outlet duct are separated from each other to avoid mutual interference.

6.2.8 Guide rail mounting

Figure 4-7 Guide rail mounting
Note: When installing the guide rail of the frequency converter, it is necessary to ensure that the inlet and outlet air ducts of the frequency converter are separated to avoid mutual influence.

6.3 Main circuit standard wiring

6.3.1 Main circuit wiring diagram

Figure 6.8 Main circuit wiring diagram (AC 3PH 380V)
Note: Fuses, input reactors, input filters, output reactors, and output filters are all optional accessories. Please refer to "Appendix D Peripheral Options" for details.

6.3.2 Main circuit terminal diagram

Figure 6.9 Main circuit terminal diagram

Terminals	Function description
R, S, T	3PH AC input terminal, connected to the grid.
U, V, W	3PH AC output terminal, connected to the motor in most cases.
$(+)$	$(+)$ and $(-)$ connect to external braking unit terminals. BR and (+) connect to external braking resistor terminals.
$(-)$	Grounding terminal for safe protection; each machine must carry two PE terminals and proper grounding is required.
BR	

Note:

- Do not use asymmetrical motor cables. If there is a symmetrical grounding conductor in the motor cable besides the conductive shielded layer, ground the grounding conductor on the VFD end and motor end.
- Route the motor cables, input power cables and control cables separately.
- (+) and (-) only used for the application of common DC bus shared by multiple VFDs, and cannot be used as DC power supply input

6.3.3 Wiring procedure of the main circuit terminals

1. Connect the ground wire of the input power cable to the PE terminal of the VFD, connect the 3PH input cable to the R, S and T terminals, and tighten up.
2. Connect the ground wire of the motor cable to the PE terminal of the VFD, connect the motor 3PH cable to the U, V and W terminals, and tighten up.
3. Connect optional parts such as the braking resistor that carries cables to designated positions.
4. Fasten all the cables outside the VFD mechanically if allowed.

Figure 6.10 Screw installation diagram

6.4 Control circuit standard wiring

6.4.1 Basic control circuit wiring diagram

Figure 6.11 Control circuit wiring diagram

Terminal name	Description
+10 V	Locally provided +10.5V power supply
Al1	\bullet

Terminal name	Description	
Al2	+10 V ; Input impedance: $20 \mathrm{k} \Omega$ during voltage input; 250Ω during current input; Whether the input is voltage or current is set through F08.53; - Resolution ratio: When 10 V corresponds to 50 Hz , the min. resolution ratio is 5 mV ; Deviation: $\pm 0.5 \%$ at $25^{\circ} \mathrm{C}$, when input is above $5 \mathrm{~V} / 10 \mathrm{~mA}$.	
GND	+10.5V reference zero potential	
AO1	- Output range: $0(2)-10 \mathrm{~V}$ or $0(4)-20 \mathrm{~mA}$ - The output voltage or current of AO 1 and AO 2 is set by jumper J 10 and J 11 - Deviation: $\pm 0.5 \%$ at $25^{\circ} \mathrm{C}$, when input is above $5 \mathrm{~V} / 10 \mathrm{~mA}$.	
AO2		
T1A	- T1 relay output; T1A is NO, T1B is NC, T1C is common terminal - Contact capacity: 3A/AC250V, 1A/DC30V	
T1B		
T1C		
HDO	- Switch capacity: $50 \mathrm{~mA} / 30 \mathrm{~V}$ - Range of output frequency: $0-50 \mathrm{kHz}$ - Duty ratio: 50%	
COM	Common terminal of +24 V	
CME	Common terminal of DO	
D01	Switch capacity: $50 \mathrm{~mA} / 30 \mathrm{~V}$ Range of output frequency: $0-1 \mathrm{kHz}$	
485+	RS485 communication port, RS485 differential signal port and standard RS485 communication port must use twisted shielded pair; the 1200hm terminal matching resistor of RS485 communication is connected by the switch J9.	
485-		
PE	Grounding terminal	
PWE	Used to provide input digital working power from the external to the internal. Voltage range: 12-30V	
24 V	User power provided by the VFD, maximum output current 200 mA .	
COM	Common terminal of +24 V	
DI1	Digital input 1	- Internal impedance: $3.3 \mathrm{k} \Omega$ - Accept $12-30 \mathrm{~V}$ voltage input - Bi-directional input terminal, supporting NPN/PNP connection modes - Max. input frequency: 1 kHz - All are programmable digital input terminals, the functions of which be set through function codes
D12	Digital input 2	
DI3	Digital input 3	
DI4	Digital input 4	
HI1	- Besides DI1-DI4 functions, the terminals can also act as high frequency pulse input channels - Max. input frequency: 50 kHz ; - Duty ratio: $30 \%-70 \%$;	

6．4．2 Input／output signal connection diagram

You can select the NPN／PNP mode and internal／external power through the U－type short connector． NPN internal mode is adopted by default．

短接片 short connector
Figure 6．12 Position of U－type short connector
If input signal comes from NPN transistors，set the U－type short connector between +24 V and PW based on the power used according to the following figure．

Figure 6.13 NPN mode
If input signal comes from PNP transistor, set the U-type short connector based on the power used according to the following figure.

Figure 6.14 PNP mode

6.5 Wiring protection

6.5.1 Protecting the VFD and input power cable in short circuit

The VFD and input power cable can be protected during short-circuit to avoid thermal overload.
Carry out protective measures according to the following requirements.

Figure 6.15 Fuse configuration
Note: Select the fuse according to operation manual. During short-circuit, the fuse will protect input power cables to avoid damage to the VFD; when internal short-circuit occurred to the VFD, it can protect neighboring equipment from being damaged.

6.5.2 Protecting the motor and motor cable in short circuit

If the motor cable is selected according to the VFD rated current, the VFD can perform short-circuit protection for the motor and motor cable, without the use of other protective devices.

4	If the VFD is connected to multiple motors, an additional thermal overload switch or breaker must be used to protect the motor and motor cable. Such a device may use the fuse to cut off the short-circuit current.

6.5.3 Protecting the motor from thermal overload

According to the requirements, the motor must be protected to prevent thermal overload. Once overload is detected, you must cut off the current. The VFD is equipped with motor thermal overload protection function, which will block output and cut off the current (if necessary) to protect the motor.

6.5.4 Bypass connection

In critical occasions, power-variable frequency conversion circuit is necessary to ensure proper operation of the system when VFD fault occurs. In some special cases, for example, only soft startup is needed, it will convert to power-frequency operation directly after soft startup, corresponding bypass link is also needed.

\triangleleft Do not connect the power supply to the VFD output terminals U, V and W. The voltage applied to the motor cable may cause permanent damage to the VFD.

If frequent switchover is needed, you can use the switch/contactor which carries mechanical interlock to ensure motor terminals are not connected to input power cables and VFD output ends simultaneously.

7 Basic operation guidelines

7.1 What this chapter contains

This chapter describes how to operate the VFD by using the keypad.

7.2 Keypad introduction

The VFD has been equipped with the LED keypad as a standard configuration part. You can use the keypad to control the start and stop, read status data, and set parameters of the VFD.

Figure 7.1 Keypad diagram
Note: When installing the keyboard externally, the keyboard mounting bracket shall be used.

SN	Name	Description	
1	Status indicator	RUN	ON: The VFD is running Blinking: The VFD is auto-tuning parameters.
		FWD	ON: The VFD is forward running Blinking: The VFD is reverse running
		LOC	ON: The VFD is in the local keypad control mode. Blinking: The VFD is in the terminal or communication control mode.
2	Unit LED	Hz	Frequency
		A	Current
		V	Voltage
		A+V $=$ \%	Percentage
		$\underline{\mathrm{Hz}+\mathrm{A}}=$ RPM	Rotation speed

SN	Name	Description			
				Potentiome ter	When the frequency given source is set as a potentiometer analog input, the frequency is controlled and set by the potentiometer.
			Run key	This key is used to operate on the VFD in key operation mode	
			Stop/ Reset key	This key is used to stop in running state and it is limited by function code $\underline{\text { F17.05 }}$ This key is used to reset all control modes in the fault alarm state	

Figure 7.2 Main interface of LED

7.3 Keypad display

The VFD keypad can display the stopped-state parameters, running-state parameters, function parameter editing status, and fault alarm status.

7.3.1 Displaying stopped-state parameters

When the VFD is in stopped state, the keypad displays stopped-state parameters.
In the stopped state, parameters in various states can be displayed. You can determine which parameters are displayed by setting the binary bits of $\underline{\mathbf{F 1 7 . 0 8}}$. For definitions of the bits, refer to the description of $\underline{\text { F17.08 }}$.

In stopping state, there are 15 parameters that can be selected for display, including setting frequency, bus voltage, input terminal status, output terminal status, PID reference value, PID feedback value, torque setting, AI1, Al2, Al3, high-speed pulse HDI frequency, PLC and the current step of multi-step speed, pulse counting value, length value, frequency upper limit. F17.08. can select the parameter to be displayed or not by bit, and you can press $\boldsymbol{\rightarrow}$ to shift the display of the selected parameters from left to right.

7.3.2 Displaying running-state parameters

After receiving a valid running command, the VFD enters the running state, and the keypad displays running-state parameters, with the RUN/TUN indicator on. The on/off state of the FWDREV indicator is determined by the current running direction.

In running state, there are 24 parameters that can be selected for display, including running frequency, setting frequency, bus voltage, output voltage, output current, running speed, output power, output torque, PID reference value, PID feedback value, input terminal status, output terminal status, torque setting, length value, PLC and the current step of multi-step speed, Al1, AI2, Al3, high-speed pulse

HDI frequency, motor overload percentage, VFD overload percentage, ramp reference value, linear speed, AC input current, and frequency upper limit. $\mathbf{F 1 7 . 0 6}$ and $\mathbf{F 1 7 . 0 7}$ can select the parameter to be displayed or not by bit, and you can press \rightarrow to shift the display of the selected parameters from left to right

7.3.3 Displaying fault information

The VFD enters fault alarm display state once fault signal is detected, and the keypad displays fault code and fault information with ERR indicator on the keypad turning on. Fault reset operation can be carried out via STOP/RST key, control terminal or communication command.

The fault code will be kept displaying until fault is removed.

7.3.4 Editing function codes

You can press the ESC key to enter the editing mode in stopped, running, or fault alarm state (if a user password is used, refer to the description of F18.00). The editing mode contains two levels of menus in the following sequence: Function code group or function code number \rightarrow Function code setting. You can press the ENT key to enter the function parameter display interface. On the function parameter display interface, you can press the ENT key to save parameter settings or press the ESC key to exit the parameter display interface.

7.4 Keypad operation

Operate the inverter via operation panel. Refer to the detailed structure description of function codes in the brief diagram of function codes.

7.4.1 How to modify the function codes of the inverter

The inverter has three levels menu, which are:

1. Group number of function code (first-level menu)
2. Tab of function code (second-level menu)
3. Set value of function code (third-level menu)

Remarks: Press both the ESC and the ENT can return to the second-level menu from the third-level menu. The difference is: pressing ENT will save the set parameters into the control panel, and then return to the second-level menu with shifting to the next function code automatically; while pressing ESC will directly return to the second-level menu without saving the parameters, and keep staying at the current function code.

Under the third-level menu, if the parameter has no flickering bit, it means the function code cannot be modified. The possible reasons could be:

1) This function code is not modifiable parameter, such as actual detected parameter, operation records and so on;
2) This function code is not modifiable in running state, but modifiable in stop state.

Example: Set function code F00.01 from 0 to 1 .

Figure 5.3 Sketch map of modifying parameters

7.4.2 How to set the password of the VFD

FD300 series VFD provide password protection function to users. Set F17.00 to gain the password and the password protection becomes valid instantly after quitting from the function code editing state. Press ESC again to the function code editing state, "0.0.0.0.0" will be displayed. Unless using the correct password, the operators cannot enter it.

Set F17.00 to 0 to cancel password protection function.
The password protection becomes effective instantly after retreating from the function code editing state. Press ESC again to the function code editing state, "0.0.0.0.0" will be displayed. Unless using the correct password, the operators cannot enter it.

Figure 5.4 Sketch map of password setting

7.4.3 How to watch the inverter state through function codes

FD300 series VFD provide group F17 as the state inspection group. Users can enter into F17 directly to watch the state.

Figure 5-5 Sketch map of state watching

5.5 Basic operations

5.5.1 What this section contains

This section introduces the function modules inside the VFD.
\square

5.5.2 Common commissioning procedure

The common operation procedure is shown in the following (taking motor 1 as an example).

Note: If fault occurred, rule out the fault cause according to "fault tracking".
The running command channel can be set by terminal commands besides $\mathrm{F00.02}$ and $\mathrm{F00.03}$.

Current running command channel F00.02	Multi-function terminal function (36) Command switches to keypad	Multi-function terminal function (37) Command switches to terminal	Multi-function terminal function (38) Command switches to communication
Keypad	$/$	Terminal	Communication
Terminal	Keypad	$/$	Communication
Communication	Keypad	Terminal	$/$

Note: "/" means this multi-function terminal is valid under current reference channel.
Related parameter list:

Function code	Name	Description	Default
F00.01	Speed control mode	0 : Sensorless vector control (SVC) mode 1: Closed-loop vector control mode 2: Space voltage vector control mode Note: To select 0 or 1 as the control mode, enable the VFD to perform motor parameter autotuning first.	2
F00.02	Channel of running commands	0: Keypad 1: Terminal 2: Communication	0
F00.18	Communication mode of running commands	0: Modbus 1: Profibus/CANopen 2: Reserved 3: Profinet 4: Reserved 5: Reserved Note: 1, 2, 3, 4 and 5 are extended functions, which can only be used after inserting the extension card	0
F01.28	Motor parameter autotuning	0 : No operation 1: Rotary autotuning. Comprehensive motor parameter autotuning. It is recommended to use rotating autotuning when high control accuracy is needed. 2: Static autotuning 1 (comprehensive	0

Function code	Name	Description	Default
		autotuning); static autotuning 1 is used in cases where the motor cannot be disconnected from load. 3: Static autotuning 2 (partial autotuning); when the present motor is motor 1 , only F01.06, F01.07 and F01.08 are autotuned; when the present motor is motor 2, only F28.06, F28.07 and F28.08 are autotuned.	
F17.01	Function parameter restore	0 : No operation 1: Restore default values 2: Clear fault records 3: Keyboard parameter locking Note: After the selected operation is performed, the function code is automatically restored to 0 . Restoring the default values may delete the user password. Exercise caution when using this function.	0
F01.00	Type of motor 1	0: Asynchronous motor (AM) 1: Synchronous motor (SM)	0
F01.01	Rated power of AM	0.1-3000.0kW	Model depended
F01.02	Rated voltage of AM	0-1200V	50.00 Hz
F01.03	Rated current of AM	0.8-6000.0A	Model depended
F01.04	Rated frequency of AM	$0.01 \mathrm{~Hz}-\mathrm{F00.07}$ (Max. output frequency)	Model depended
F01.05	Rated speed of AM	1-60000rpm	Model depended
F01.15	Rated power of SM	0.1-3000.0kW	Model depended
F01.16	Rated voltage of SM	0-1200V	50.00 Hz
F01.17	Rated current of SM	0.8-6000.0A	2
F01.18	Rated frequency of SM	$0.01 \mathrm{~Hz}-\mathrm{F00.07}$ (Max. output frequency)	Model depended

Function code	Name	Description	Default
$\underline{\text { F01.19 }}$	Number of pole pairs of SM	1-50	Model depended
$\underline{\text { F08.01- }}$Function selection of multifunction digital input terminals (DI1- DI4, HI1, HI2)	36: Switch the running command channel to keypad 37: Switch the running command channel to terminal 38: Switch the running command channel to communication		
F17.02	Parameter copy	0: No operation 1: Upload the local function parameter to the keypad 2: Download the keypad function parameter to local address(including the motor parameters) 3: Download the keypad function parameter to local address (excluding the motor parameter) 4: Download the keypad function parameters to local address (only for the motor parameter)	0

5.5.3 Vector control

AMs feature high order, nonlinearity, strong coupling and multi-variables, which increase difficulty to control AMs during actual application. The vector control technology solves this situation as follows: measures and controls the stator current vector of the AM, and then decomposes the stator current vector into exciting current (current component that generates internal magnet field) and torque current (current component that generates torque) based on field orientation principle, and therefore controls the amplitude values and phase positions of the two components (namely, controls the stator current vector of the AM) to realize decoupled control on exciting current and torque current, thus
achieving high-performance speed regulation of the AM.
The VFD uses the sensor-less vector control algorithm, which can be used to drive AMs and permanent-magnet SMs simultaneously. As the core algorithm of vector control is based on accurate motor parameter models, the accuracy of motor parameters affects vector control performance. It is recommended to enter accurate motor parameters and autotune motor parameters before executing vector control.

As the vector control algorithm is complicated, exercise caution before modifying vector control function parameters.

Function code	Name	Description	Default
$\underline{\text { F00.01 }}$	Speed control mode	0: Sensorless vector control (SVC) mode 1: Closed-loop vector control mode 2: Space voltage vector control mode Note: To select 0 or 1 as the control mode, enable the VFD to perform motor parameter autotuning first.	2
F01.28	Motor parameter autotuning	0: No operation 1: Rotation autotuning Comprehensive motor parameter autotune It is recommended to use rotation autotuning when high control accuracy is needed. 2: Static autotuning 1 It is suitable in the cases when the motor cannot	0

Function code	Name	Description	Default
		de-couple from the load. 3: Static autotuning 2 It is suitable in the cases when the motor cannot de-couple form the load. But only for parts of parameters.	
F01.00	Type of motor 1	0: Asynchronous motor (AM) 1: Synchronous motor (SM)	0
F03.00	Speed-loop proportional gain 1	Setting range of F03.00: 0.0-200.0 Setting range of F03.01: 0.000-10.000s Setting range of $\underline{F 03.02:} 0.00 \mathrm{~Hz}-\underline{F 03.05}$ Setting range of F03.03: 0.0-200.0 Setting range of F03.04: 0.000-10.000s Setting range of F03.05: F03.02-F00.03 (Max. output frequency)	20.0
F03.01	Speed-loop integral time 1		0.200s
F03.02	Low-point frequency for switching		5.00 Hz
F03.03	Speed-loop proportional gain 2		20.0
F03.04	Speed-loop integral time 2		0.200s
F03.05	High-point frequency for switching		10.00 Hz
F03.06	Electromotive slip compensation coefficient of vector control	Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of the system. Adjusting the parameter properly can control the speed steady-state error. Setting range: 50-200\%	100\%
F03.05	Power-genera tion slip compensation coefficient of vector control		100\%

Function code	Name	Description	Default
F03.08	Speed-loop output filter	$0-8$ (corresponding to $0-2^{\wedge} 8 / 10 \mathrm{~ms}$)	0
F03.09	Setting source of electromotive torque upper limit	0: Keypad (F03.10) 1: Al1 (100% corresponding to three times the motor rated current) 2: Al2 (same as the above) 3: Reserved 4: Pulse frequency HI1 (same as the above) 5: Modbus communication (same as the above) 6: Profibus/CANopen communication (same as the above) 7: Reserved 8: Pulse frequency HI2 (same as the above) 9: Profinet communication 10: Reserved 11: Reserved	0
F03.10	Electromotive torque upper limit set through keypad	The function codes are used to set torque limits. Setting range: $0.0-300.0 \%$ (of the motor rated current)	180.0\%
F03.11	Setting source of braking torque upper limit	0: Keypad (F03.10) 1: Al1 (100% corresponding to three times the motor rated current) 2: Al2 (same as the above) 3: Reserved 4: Pulse frequency HI1 (same as the above) 5: Modbus communication (same as the above) 6: Profibus/CANopen communication (same as the above) 7: Reserved 8: Pulse frequency HI2 (same as the above) 9: Profinet communication 10: Reserved 11: Reserved	0
F03.12	Braking torque upper	The function codes are used to set torque limits. Setting range: $0.0-300.0 \%$ (of the motor rated current)	180.0\%

Basic operation guidelines

Function code	Name	Description	Default
	limit set through keypad		
F03.13	Current-loop proportional coefficient P	Note: - The two function codes impact the dynamic response speed and control accuracy of the system.	1000
F03.14	Current-loop integral coefficient I	Generally, you do not need to modify the two function codes. - Applicable to SVC mode 0 ($\mathrm{FO0.19}=0$), SVC mode 1(F00.19=1), and closed-loop vector control mode (F00.01=1). Setting range: 0-65535	1000
F03.15	PM flux-weakenin g control selection	0: Disable 1: Enable	0
F03.16	Flux-weakeni ng voltage limit (PM and AM SVC 0)	Set the max output voltage (percentage of motor rated voltage), set as per actual. Setting range: $0.0 \sim 120.0 \%$	100.0\%
F03.17	Flux-weakeni ng proportional coefficient P	0~8000	1000
F0. 18	Flux-weakeni ng integral coefficient I	0~8000	1200
F03.19	Weakening coefficient		0.3
F03.20	Lowest weakening point (AM SVC 1)	Setting range of F03.19: 0.1-2.0 Setting range of F03.20: 10\%-100\%	20\%
F03.21	Speed display selection in vector control	0 : Display the actual value 1: Display the set value	0

Function code	Name	Description	Default
F03.22	Static friction compensation coefficient	0.0-100.0\%	0.0\%
F03.23	Correspondin g frequency point of static friction	0.50-F03.25	1.00Hz
F03.24	High speed friction compensation coefficient	0.0-100.0\%	0.0\%
F03.25	Correspondin g frequency of high-speed friction torque	F03.23-F00.07(Max frequency)	50.00 Hz
F03.26		0: Disable 1: Enable	0
F03.27	Upper limit of inertia compensation torque	The max. inertia compensation torque is limited to prevent inertia compensation torque from being too large. Setting range: $0.0-150.0 \%$ (of the motor rated torque)	10.0\%
F03.28	Inertia compensation filter times	Filter times of inertia compensation torque, used to smooth inertia compensation torque. Setting range: 0-10	7
F03.29	Inertia identification torque value	Due to friction force, it is required to set certain identification torque for the inertia identification to be performed properly. Setting range: $0.0-100.0 \%$ (of the motor rated torque)	10.0\%
F03.30	Enabling inertia identification	0 : No operation 1: Enable	0
F03.31	Control optimization setting	$0-0 \times 1111$ Unit place: Torque command selection 0 : Torque reference 1: Torque current reference Tens place: Reserved	0x0000

Function code	Name	Description	Default
		0: Reserved 1: Reserved Hundreds place: indicates whether to enable speed-loop integral separation 0: Disable 1: Enable Thousands place: Reserved 0: Reserved 1: Reserved Range: $0 \times 0000-0 \times 1111$	
F03.32	Speed-loop differential gain	0.00-10.00s	0.00s
F03.33	High-frequenc y current-loop proportional coefficient	Setting range of F03.33: 0-65535 Setting range of F03.34: 0-65535 Setting range of F03.35: 0.0-100.0\% (of the maximum frequency)	1000
F03.34	High-frequenc y current-loop integral coefficient		1000
F03.35	Current-loop high-frequenc y switching threshold		100.0\%
F03.36	SM injection current drop rate	Setting range: $0.0 \%-100.0 \%$ (of the motor rated current)	80.0\%
F03.37	Injection current 1	Setting range: $0.0 \%-100.0 \%$ (of the motor rated current)	20.0\%
F03.38	Injection current 2	Setting range: $0.0 \%-100.0 \%$ (of the motor rated current)	10.0\%
F03.39	Injection current switchover frequency	$0.00 \mathrm{~Hz}-\underline{\text { F00.03 }}$ (Max. output frequency)	10.00 Hz

Function code	Name	Description	Default
F03.40	Sto detection time	Setting range: 0.0-10.0s	0.5s
F03.41	High-frequenc y compensation coefficient of SM	Setting range: 0.0-100.0\%	0.0\%
F03.42	Current loop proportion coefficient obtained by auto tune	F03.42 will update after motor auto tune. This value can be set to F03.13 manually for PM VC control. Setting range: 0~65535 Note: if not perform the motor auto tune, it is 0	0
F03.43	Current loop integral coefficient obtained by auto tune	F03.43 will update after motor auto tune. This value can be set to F03.14 manually for PM VC control. Setting range: 0~65535 Note: if not perform the motor auto tune, it is 0	0

5.5.4 V/F control mode

The VFD also provides the V/F control function. The V/F control mode can be used in cases where mediocre control precision is enough and in cases where the VFD needs to drive multiple motors.

The VFD provides multiple V/F curve modes to meet different requirements. You can select V/F curves or set V/F curves as required.

Suggestions:

- For the load featuring constant moment, such as conveyor belt which runs in straight line, as the whole running process requires constant moment, it is recommended to adopt the straight line V/F curve.
- For the load featuring decreasing moment, such as fan and water pumps, as there is a power (square or cube) relation between its actual torque and speed, it is recommended to adopt the V/F curve corresponding to the power of 1.3, 1.7 or 2.0.

The VFD also provides multi-point V/F curves. You can change the V/F curves output by the VFD by setting the voltage and frequency of the three points in the middle. A whole curve consists of five points starting from $(0 \mathrm{~Hz}, \mathrm{OV})$ and ending at (motor fundamental frequency, motor rated voltage). During setting, follow the rule: $0 \leq \mathrm{f} 1 \leq \mathrm{f} 2 \leq \mathrm{f} 3 \leq$ Motor fundamental frequency, and, $0 \leq \mathrm{V} 1 \leq \mathrm{V} 2 \leq \mathrm{V} 3 \leq$ Motor rated voltage

The VFD provides dedicated function codes for the space voltage control mode. You can improve the space voltage control performance by means of setting.

The VFD provides dedicated function codes for the space voltage control mode. You can improve the space voltage control performance by means of setting.

(1) Torque boost

The torque boost function can effectively compensate for the low-speed torque performance in space voltage control. Automatic torque boost has been set by default, which enables the VFD to adjust the torque boost value based on actual load conditions.

Note:

- Torque boost takes effect only at the torque boost cut-off frequency.
- If torque boost is too large, the motor may encounter low-frequency vibration or overcurrent. If such a situation occurs, reduce the torque boost value.

(2) V/F slip compensation gain

Space voltage vector control belongs to an open-loop mode. Sudden motor load changes cause motor speed fluctuation. In cases where strict speed requirements must be met, you can set the slip compensation gain to compensate for the speed change caused by load fluctuation through VFD internal output adjustment.

The setting range of slip compensation gain is $0-200 \%$, in which 100% corresponds to the rated slip frequency.

Note: Rated slip frequency = (Rated synchronous rotation speed of motor - Rated rotation speed of motor) x (Number of motor pole pairs)/60

(3) Oscillation control

Motor oscillation often occurs in space voltage vector control in large-power driving applications. To solve this problem, the VFD provides two oscillation factor function codes. You can set the function codes based on the oscillation occurrence frequency.

Note: A greater value indicates better control effect. However, if the value is too large, the VFD output current may be too large.

(4) AM IF control

Generally, the IF control mode is valid for AMs. It can be used for SMs only when the frequency is extremely low. Therefore, the IF control mode described in this manual is only involved with AMs. IF control is implemented by performing closed-loop control on the total output current of the VFD. The output voltage adapts to the current reference, and open-loop control is separately performed over the frequency of the voltage and current.

Customized V/F curve (V/F separation) function:

When selecting the customized V/F curve function, you can specify the setting channels and acceleration/deceleration time of voltage and frequency respectively, which form a real-time V/F curve in combination manner.

Note: This type of V/F curve separation can be applied in various variable-frequency power sources. However, exercise caution when setting parameters as improper settings may cause equipment damage.

Function code	Name	Description	Default

Function code	Name	Description	Default
F00.01	Speed control mode	0: Sensorless vector control (SVC) mode 1: Closed-loop vector control mode 2: Space voltage vector control mode Note: To select 0 or 1 as the control mode, enable the VFD to perform motor parameter autotuning first.	2
F00.07	Max. output frequency	Max (F00.08, 10.00)-630.00Hz	50.00 Hz
F00.08	Upper limit of running frequency	F00.09-F00.07 (Max. output frequency)	50.00 Hz
F00.09	Lower limit of running frequency	0.00 Hz - (Upper limit of running frequency)	0.00 Hz
F00.13	ACC time 1	0.0-3600.0s	Model depended
F00.14	DEC time 1	0.0-3600.0s	Model depended
F01.00	Type of motor 1	0: Asynchronous motor (AM) 1: Synchronous motor (SM)	0
F01.01	Rated frequency of AM 1	$0.01 \mathrm{~Hz}-\mathrm{F00.03}$ (Max. output frequency)	50.00 Hz
F01.02	Rated voltage of AM 1	0-1200V	Model depended
F04.00	V/F curve setting of motor 1	0 : Straight-line V/F curve 1: Multi-point V/F curve 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 1.7) 4: Torque-down V/F curve (power of 2.0) 5: Customized V/F curve (V/F separation)	0
F04.01	Torque boost of motor 1	0.0\%: (automatic); 0.1\%-10.0\%	0.0\%
F04.02	Torque boost cut-off of motor 1	0.0\%-50.0\% (of the rated frequency of motor 1)	20.0\%
F04.03	V/F frequency point 1 of motor 1	0.00Hz-F04.05	0.00 Hz
F04.04	V/F voltage point 1 of motor 1	0.0\%-110.0\%	0.0\%
F04.05	V/F frequency	F04.03-	0.00 Hz

Basic operation guidelines

Function code	Name	Description	Default
	point 2 of motor 1		
F04.06	V/F voltage point 2 of motor 1	0.0\%-110.0\%	0.0\%
F04.07	V/F frequency point 3 of motor 1	F04.05-F04.09	0.00Hz
F04.08	V/F voltage point 3 of motor 1	0.0\%-110.0\%	0.0\%
F04.09	V/F frequency point 4	F04.07- $\underline{\text { 001.04 }}$ or $\underline{\text { F04.05-F01.18 }}$	0.00Hz
F04.10	V/F voltage point 4	0.0\%-110.0\%	0.0\%
F04.11	Low-frequency oscillation control factor of motor 1	0-100	10
F04.12	High-frequency oscillation control factor of motor 1	0-100	10
	Oscillation control threshold of motor 1	$0.00 \mathrm{~Hz}-\mathrm{F00.07}$ (Max. output frequency)	30.00 Hz
F04.14	V/F slip compensation gain of motor 1	0.0-200.0\%	100.0\%
F04.15	Voltage setting channel of customized V/F	0 : Keypad (The output voltage is determined by F04.16) 1: Al1 2: Al2 3: Reserved 4: HI1 5: Multi-step speed running (The setting is determined by group F12.) 6: PID 7: Modbus communication 8: Profibus/CANopen communication 9: Ethernet communication 10: HI2 11: Profinet communication	0

Basic operation guidelines

Function code	Name	Description	Default
		12: Reserved 13: Reserved	
F04.16	Voltage set through keypad	Setting range: $0.0 \%-100.0 \%$	100.0\%
F04.17	Voltage increase time	0.0-3600.0s	5.0s
F04.18	Voltage setting channel of customized V/F	0.0-3600.0s	0
F04.19	Max. output voltage	F04.20-100.0\% (of the motor rated voltage)	100\%
F04.20	Min. output voltage	0.0\%-F04.19	0.00 Hz
F04.21	Energy-saving run	0: Disable 1: Automatic energy-saving run	0.0\%
F04.22	Weakening coefficient in constant power zone	1.00-1.30	0.00Hz
F04.23	Enabling IF mode for AM 1	0: Disable 1: Enable	0.0\%
F04.24	Current setting in IF mode for AM 1	0.0-200.0\%	0.00Hz
F04.25	Proportional coefficient in IF mode for AM 1	0-5000	0.0\%
F04.26	Integral coefficient in IF mode for AM	0-5000	100.0\%
F04.27	Frequency threshold for switching off IF mode for AM 1	0.00-F04.28	10
F04.28	End frequency point for switching off IF mode for AM 1	F04.27-F00.07	10
F04.29	Injection current 1	-100.0\%-100.0\% (of the motor rated current)	30.00 Hz

Basic operation guidelines

Function code	Name	Description	Default
	in SM V/F control		0
F04.30	Injection current 2 in SM V/F control	$-100.0 \%-100.0 \%$ (of the motor rated current)	0
Frequency threshold for Injection current switching in SM V/F control	0.00 Hz -F00.07 (Max. output frequency)	100.0%	
F04.32Reactive current closed-loop proportional coefficient in SM V/F control	$0-3000$	5.0 s	
F04.33	Reactive current closed-loop integral time in SM V/F control	$0-3000$	5.0 s
F04.34	Reactive current closed-loop output limit in SM V/F control	$0-16000$	

5.5.5 Torque control

The VFD supports torque control and speed control. Speed control aims to stabilize the speed to keep the set speed consistent with the actual running speed, meanwhile, the max. load-carrying capacity is restricted by the torque limit. Torque control aims to stabilize the torque to keep the set torque consistent with the actual output torque, meanwhile, the output frequency is restricted by the upper and lower limits.

Function code	Name	Description	Default
F00.01	Speed control mode	0: Sensorless vector control (SVC) mode 1: Closed-loop vector control mode 2: Space voltage vector control mode Note: To select 0 or 1 as the control mode, enable the VFD to perform motor parameter autotuning first.	2
F05.00	Enabling torque control	0: Disable 1: Enable	0
F05.00	Enabling torque control	0: Disable 1: Enable	0
F05.01	Torque setting method	0-1: Keypad (F05.02) 2: Al1 (100% corresponding to three times the motor rated current) 3: Al2 (same as the above) 4: Reserved 5: Pulse frequency HI1 (same as the above) 6: Multi-step torque (same as the above) 7: Modbus communication (same as the above) 8: Profibus/CANopen communication (same as the above) 9: Reserved 10: Pulse frequency HI 2 (same as the above) 11: Profinet communication 12: Reserved	0
F05.02	Torque set through keypad	-300.0\%-300.0\% (of the motor rated current)	20.0\%
F05.03	Torque reference filter time	0.000-10.000s	0.010s
F05.04	Setting source of forward rotation upper-limit frequency in torque control	0: Keypad (F05.05) 1: Al1 (100\% corresponding to the max. frequency) 2: Al2 (same as the above) 3: Reserved 4: Pulse frequency HIA1 (same as the above) 5: Multi-step setting (same as the above) 6: Modbus communication(same as the above) 7: Profibus/CANopen communication (same as the above)	0

Function code	Name	Description	Default
		8: Reserved 9: Pulse frequency HI2 (same as the above) 10: Profinet communication 11: Reserved 12: Reserved	
F05.05	Forward rotation upper-limit frequency set through keypad in torque control	Setting range: $0.00 \mathrm{~Hz}-\underline{P 00.07}$ (Max. output frequency) The function codes are used to set the frequency upper limits.	50.00 Hz
F05.06	Setting source of reverse rotation upper-limit frequency in torque control	0: Keypad (F05.05) 1: Al1 (100\% corresponding to the max. frequency) 2: Al2 (same as the above) 3: Reserved 4: Pulse frequency HIA1 (same as the above) 5: Multi-step setting (same as the above) 6: Modbus communication (same as the above) 7: Profibus/CANopen communication (same as the above) 8: Reserved 9: Pulse frequency HI2 (same as the above) 10: Profinet communication 11: Reserved 12: Reserved	0
F05.07	Reverse rotation upper-limit frequency set through keypad in torque control	Setting range: $0.00 \mathrm{~Hz}-\mathrm{P} 00.07$ (Max. output frequency) The function codes are used to set the frequency upper limits.	50.00 Hz
F03.09	Setting source of electromotive torque upper limit	0: Keypad (F03.10) 1: Al1 (100\% corresponding to three times the motor rated current) 2: Al2 (same as the above) 3: Reserved 4: Pulse frequency HI1 (same as the above) 5: Modbus communication (same as the above) 6: Profibus/CANopen communication (same as the above)	0

Function code	Name	Description	Default
		7: Reserved 8: Pulse frequency HI2 (same as the above) 9: Profinet communication 10: Reserved 11: Reserved	
F03.10	Electromotive torque upper limit set through keypad	The function codes are used to set torque limits. Setting range: 0.0-300.0\% (of the motor rated current)	180.0\%
F03.11	Setting source of braking torque upper limit	0: Keypad (F03.12) 1: Al1 (100\% corresponding to three times the motor rated current) 2: Al2 (same as the above) 3: Al3 (same as the above) 4: Pulse frequency HDIA (same as the above) 5: Modbus communication (same as the above) 6: Profibus/CANopen communication (same as the above) 7: Ethernet communication (same as the above) 8: Pulse frequency HDIB (same as the above) 9: Profinet communication 10: Programmable extension card 11: Reserved	0
F03.12	Braking torque upper limit set through keypad	0.0-300.0\% (of the motor rated current)	180.0\%
F18.09	Output torque	-250.0-250.0\%	0.0\%
F18.15	Torque reference value	-300.0-300.0\% (of the motor rated current)	0.0\%

5.5.6 Motor parameters

| \& Check the safety conditions surrounding the motor and load machineries before |
| :---: | :--- |
| autotuning as physical injury may occur due to sudden start of motor during |
| autotuning. |
| \diamond Although the motor does not run during static autotuning, the motor is still supplied |
| with power. Do not touch the motor during autotuning; otherwise, electric shock |
| may occur. Do not touch the motor before autotuning is completed. |

$!$	\diamond If the motor has been connected to a load, do not carry out rotary autotuning. Otherwise, the VFD may malfunction or may be damaged. If rotary autotuning is carried out on a motor which has been connected to a load, incorrect motor parameter settings and motor action exceptions may occur. Disconnect from the load to carry out autotuning if necessary.

The VFD can drive both asynchronous motors and synchronous motors, and it supports two sets of motor parameters, which can be switched over by multifunction digital input terminals or communication modes.

The control performance of the VFD is based on accurate motor models. Therefore, you need to carry out motor parameter autotuning before running a motor for the first time (taking motor 1 as an example).

Note:

- Motor parameters must be set correctly according to the motor nameplate.
- If rotary autotuning is selected during motor autotuning, disconnect the motor from the load to put
the motor in static and no-load state. Otherwise, the motor parameter autotuning results may be incorrect. In addition, autotune F01.06- for AMs and autotune F01.20-F01.23 for SMs.
- If static autotuning is selected for motor autotuning, there is no need to disconnect the motor from the load, but the control performance may be impacted as only a part of the motor parameters have been autotuned. In addition, autotune F01.06- for AMs and autotune F01.20-F01.22 for SMs. F01.23 can be obtained through calculation.
- Motor autotuning can be carried out on the present motor only. If you need to perform autotuning on the other motor, switch the motor through selecting the switchover channel of motor 1 and motor 2 by setting the ones place of F10.38.

Related parameter list:

Function code	Name	Description	Default
F00.02	Channel of running commands	0: Keypad 1: Terminal 2: Communication	0
F01.28	Motor parameter autotuning	0 : No operation 1: Rotary autotuning 1. Comprehensive motor parameter autotuning. It is recommended to use rotating autotuning when high control accuracy is needed. 2: Static autotuning 1 (comprehensive autotuning); static autotuning 1 is used in cases where the motor cannot be disconnected from load. 3: Static autotuning 2 (partial autotuning); when the present motor is motor 1, only F02.06, F02.07 and F02.08 are autotuned; when the present motor is motor 2, only F28.06, F28.07 and F28.08 are autotuned.	0
F01.00	Type of motor 1	0 : Asynchronous motor (AM) 1: Synchronous motor (SM)	0
F01.01	Rated power of AM 1	0.1-3000.0kW	Model depended
F01.02	Rated voltage of AM 1	0-1200V	Model

Function code	Name	Description	Default
			depended
F01.03	Rated current of AM 1	0.8-6000.0A	Model depended
F01.04	Rated frequency of AM 1	$0.01 \mathrm{~Hz}-\mathrm{F00.03}$ (Max. output frequency)	50.00 Hz
F01.05	Rated speed of AM 1	1-60000rpm	Model depended
F02.06	Stator resistance of AM 1	0.001-65.535	Model depended
F02.07	Rotor resistance of AM 1	0.001-65.535	Model depended
F02.08	Leakage inductance of AM 1	$0.1-6553.5 \mathrm{mH}$	Model depended
F02.09	Mutual inductance of AM 1	$0.1-6553.5 \mathrm{mH}$	Model depended
F02.10	No-load current of AM 1	0.1-6553.5A	Model depended
F02.15	Rated power of SM 1	0.1-3000.0kW	Model depended
F01.16	Rated voltage of SM 1	0-1200V	Model depended
F01.17	Rated current of SM 1	0.8-6000.0A	Model depended
F01.18	Rated frequency of SM 1	$0.01 \mathrm{~Hz}-\mathrm{F00.07}$ (Max. output frequency)	50.00 Hz
F01.19	Number of pole pairs of SM 1	1-128	2
F02.20	Stator resistance of SM 1	0.001-65.535	Model depended
F02.21	Direct-axis inductance of SM 1	$0.01-655.35 \mathrm{mH}$	Model depended
F02.22	Quadrature-axis	$0.01-655.35 \mathrm{mH}$	Model depended

Basic operation guidelines

Function code	Name	Description	Default
	inductance of SM 1		
F02.23	Counter-emf constant of SM 1	0-10000	300
$\frac{\text { F08.00- }}{\text { F08.05 }}$	Function selection of multifunction digital input terminals (DI1DI4, HI1, HI1)	35: Switch from motor 1 to motor 2	
F10.38	Switching between motor 1 and motor 2	$0 \times 00-0 \times 14$ Ones: Switchover channel 0 : Terminal 1: Modbus communication 2: Profibus/CANopen communication 3: Ethernet communication 4: Profinet communication Tens: indicates whether to enable switchover during running 0: Disable 1: Enable	00
F28.00	Type of motor 2	0: Asynchronous motor (AM) 1: Synchronous motor (SM)	0
F28.01	Rated power of AM 2	0.1-3000.0kW	Model depended
F28.02	Rated voltage of AM 2	0-1200V	Model depended
F28.03	Rated current of AM 2	0.8-6000.0A	Model depended
F28.03	Rated frequency of AM 2	$0.01 \mathrm{~Hz}-\mathrm{F00.07}$ (Max. output frequency)	50.00 Hz
F28.05	Rated speed of AM 2	1-60000rpm	Model depended
F28.06	Stator resistance of AM 2	0.001-65.535	Model depended

Function code	Name	Description	Default
F28.07	Rotor resistance of AM 2	0.001-65.535	Model depended
F28.08	Leakage inductance of AM 2	$0.1-6553.5 \mathrm{mH}$	Model depended
F28.09	Mutual inductance of AM 2	$0.1-6553.5 \mathrm{mH}$	Model depended
F28.10	No-load current of AM 2	0.1-6553.5A	Model depended
F28.15	Rated power of SM 2	0.1-3000.0kW	Model depended
F28.16	Rated voltage of SM 2	0-1200V	Model depended
F28.17	Rated current of SM 2	0.8-6000.0A	Model depended
F28.18	Rated frequency of SM 2	$0.01 \mathrm{~Hz}-\mathrm{F00.07}$ (Max. output frequency)	50.00 Hz
F28.19	Number of pole pairs of SM 2	1-128	2
F28.20	Stator resistance of SM 2	0.001-65.535	Model depended
F28.21	Direct-axis inductance of SM 2	$0.01-655.35 \mathrm{mH}$	Model depended
F28.22	Quadrature-axis inductance of SM 2	$0.01-655.35 \mathrm{mH}$	Model depended
F28.23	Counter-emf constant of SM 2	0-10000	300

5.5.7 Start/stop control

The start/stop control of the VFD involves three states: start after a running command is given at power-on; start after power-off restart is effective; start after automatic fault reset. The three start/stop control states are described in the following.

There are three start modes for the VFD, which are start at starting frequency, start after DC braking,
and start after speed tracking. You can select the proper start mode based on actual conditions.
For large-inertia load, especially in cases where reversal may occur, you can choose to start after DC braking or start after speed tracking.

Note: It is recommended to drive SMs in direct start mode.

(1) Logic diagram for start after a running command is given at power-on

(2) Logic diagram for start after power-off restart is effective

(3) Logic diagram for start after automatic fault reset

Related parameter list:

Function code	Name	Description	Default
$\underline{\text { F00.02 }}$	Channel of running commands	0: Keypad 1: Terminal 2: Communication	0
$\underline{\text { F00.13 }}$	ACC time 1	$0.0-3600.0 \mathrm{~s}$	Model depended
$\underline{\text { F00.14 }}$	DEC time 1	0.0-3600.0s	Model depended
$\underline{\text { F06.00 }}$	Start mode	0: Direct start 1: Start after DC braking 2: Speed tracking restart 1	0

Basic operation guidelines

Function code	Name	Description	Default
		3: Speed tracking restart 2	
F06.01	Starting frequency of direct start	0.00-50.00Hz	0.50Hz
F06.02	Starting frequency hold time	0.0-50.0s	0.0s
F06.03	Braking current before start	0.0-100.0\%	0.0\%
F06.04	DC braking time before start	0.00-50.00s	0.00s
F06.05	Pre excitation time	0.000~10.000s	0.3000s
F06.06	ACC and DEC mode	0: Linear 1: S curve	0
F06.07	Time of starting segment of ACC S curve	0.0-50.0s	0.1s
F06.08	Time of ending segment of ACC S curve	0.0-50.0s	0.1s
F06.09	Time of starting segment of DEC S curve	0.0-50.0s	0.1s
F06.10	Time of ending segment of DEC S curve	0.0-50.0s	0.1s
F01.11	Stop mode	0: Decelerate to stop 1: Coast to stop	0
F06.12	Starting frequency of DC braking for stop	$0.00 \mathrm{~Hz}-\mathrm{F00.07}$ (Max. output frequency)	0.00Hz
F06.13	DC braking current for stop	0.0-100.0\%	0.0\%
F06.14	DC braking time for stop	0.0-50.0s	0.00s
F06.15	Demagnetization time	0.00-30.00s	0.00 s
F06.16	Short-circuit braking current	0.0-100.0\% (VFD)	0.0\%
P06.17	Hold time of short-circuit braking for start	0.0-50.00s	0.00s
F06.18	Hold time of short-circuit braking for stop	0.0-50.00s	0.00s

Basic operation guidelines

Function code	Name	Description	Default
F06.19	Magnetic flux braking	0: Invalid 100-150: A greater coefficient indicates greater braking strength.	0
F06.20	Stop speed	$0.00-100.00 \mathrm{~Hz}$	0.50 Hz
F06.21	Stop speed detection mode	0 : Detect by the set speed (unique in space voltage vector control mode) 1: Detect by the feedback speed	0
F06.22	Stop speed detection time	0.00-100.00s	0.50s
F06.23	Pre-exciting time of jog	0-10.000s	0.000s
F06.24	Starting frequency of braking for jogging to stop	0-F00.03	0.00 Hz
F06.25	Delay to enter sleep	0-3600.0s	0.0s
$\begin{aligned} & \frac{F 08.00-}{\text { F08.05 }} \end{aligned}$	Digital input function selection	1: Run forward 2: Run reversely 4: Jog forward 5: Jog reversely 6: Coast to stop 7: Reset faults 8: Pause running 21: ACC/DEC time selection 1 22: ACC/DEC time selection 2 30: Disable ACC/DEC	
F10.00	Running frequency of jog	$0.00 \mathrm{~Hz}-\mathrm{F00.07}$ (Max. output frequency)	5.00 Hz
F10.01	ACC time for jog	0.0-3600.0s	Model depended
F10.02	DEC time for jog	0.0-3600.0s	Model depended
F10.03	ACC time 2	0.0-3600.0s	Model depended
F10.04	DEC time 2	0.0-3600.0s	Model depended
F10.05	ACC time 3	0.0-3600.0s	Model depended
F10.06	DEC time 3	0.0-3600.0s	Model depended
F10.07	ACC time 4	0.0-3600.0s	Model depended

Basic operation guidelines

Function code	Name	Description	Default
F10.08	DEC time 4	$0.0-3600.0 \mathrm{~s}$	Model depended
$\underline{\text { F10.28 }}$	Switching frequency of ACC/DEC time	$0.00-$ F00.03(Max. output frequency) 0.00 Hz No switchover If the running frequency is greater than F10.28, switch to ACC/DEC time 2.	0
F00.17	Reference frequency of ACC/DEC time	0: Max. output frequency 1: Set frequency 2: 100 Hz Note: Valid only for straight-line ACC/DEC	0
F10.32	Auto fault reset count	$0-10$	0
$\underline{\text { F10.33 }}$	Auto fault reset interval	$0.1-3600.0 \mathrm{~s}$	0

5.5.8 Frequency setting

The VFD supports multiple frequency setting methods, which can be divided into two types: main reference channel and auxiliary reference channel.

There are two main reference channels, namely frequency reference channel A and frequency reference channel B. These two channels support simple arithmetical operation between each other, and they can be switched dynamically by setting multi-function terminals.

There is one input mode for auxiliary reference channel, namely terminal UP/DOWN switch input. By setting function codes, you can enable the corresponding reference mode and the impact made on the VFD frequency reference by this reference mode.

The actual reference of VFD is comprised of the main reference channel and auxiliary reference channel.

The VFD supports switchover between different reference channels, and the rules for channel switchover are shown in the following.

Present reference channel F00.06	Multifunction terminal function 13	Multifunction terminal function 14	Multifunction terminal function 15
Main switched to	Combination setting	Combination setting	
Main	Auxiliary	switched to Main	switched to Auxiliary

Present reference channel F00.06	Multifunction terminal function 13 Main switched to Auxiliary	Multifunction terminal function 14 Combination setting switched to Main	Multifunction terminal function 15 Combination setting switched to Auxiliary
Auxiliary	Main	$/$	$/$
Main + Auxiliary	$/$	Main	Auxiliary
Main + Auxiliary	$/$	Main	Auxiliary
Max(Main, Auxiliary)	$/$	Main	Auxiliary
Min(Main, Auxiliary)	$/$	Main	Auxiliary

Note: "/" indicates this multifunction terminal is invalid under present reference channel.
When setting the auxiliary frequency inside the VFD via multi-function terminal UP (10) and DOWN (11), you can increase/decrease the frequency quickly by setting F08.10 (UP terminal frequency incremental change rate) and F08.11 (DOWN terminal frequency decrement change rate).

Related parameter list:

Function code	Name	Description	Default
F00.07	Max. output frequency	$\operatorname{Max}(\underline{\text { F00.08 }}, 10.00)-630.00 \mathrm{~Hz}$	50.00 Hz
F00.08	Upper limit of running frequency	F00.09-F00.07	50.00 Hz
F00.09	Lower limit of running frequency	0.00Hz-F00.08	0.00Hz
F00.03	Main frequency source setting	$\begin{aligned} & \text { 0: Keypad } \\ & \text { 1: Al1 } \end{aligned}$	0
F00.04	Auxiliary frequency source setting	2: AI2 3: Reserved 4: High-speed pulse HI1	15

Function code	Name	Description	Default
		5: Simple PLC program 6: Multi-step speed running 7: PID control 8: Modbus communication 9: Profibus/CANopen communication 10: Reserved 11: High-speed pulse HI2 12: Pulse train $A B$ 13: Profinet communication 14: Reserved 15: Reserved	
F00.05	Reference object of Auxiliary frequency	0: Max. output frequency 1: Main frequency command	0
F00.06	Combination mode of setting source	0 : Main frequency 1: Auxiliary frequency 2: (Main + Auxiliary) 3: (Main - Auxiliary) 4: Max(Main, Auxiliary) 5: Min. (Main, Auxiliary)	0
$\begin{aligned} & \frac{F 08.00-}{\text { F08.05 }} \end{aligned}$	Function selection of multifunction digital input terminals (DI1-DI4, HI1, HI2)	10: Increase frequency setting (UP) 11: Decrease frequency setting (DOWN) 12: Clear the frequency increase/decrease setting 13: Switch between A setting and B setting 14: Switch between combination setting and main setting 15: Switch between combination setting and auxiliary setting	
F07.39	Keypad control setting	0x0000~0x1223 LED ones: frequency enable selection 0 : Both \wedge / \vee keys and analog potentiometer adjustments are valid 1: Only \wedge / \vee keys adjustment is valid 2: Only analog potentiometer adjustments is valid 3: Neither \wedge / \vee keys nor digital potentiometer adjustments are valid	0x0000

Basic operation guidelines

Function code	Name	Description	Default
		LED tens: frequency control selection 0 : Only valid when $\mathrm{P} 00.03=0$ or P00.04=0 1: Valid for all frequency setting manner 2: Invalid for multi-step speed when multi-step speed has the priority LED hundreds: action selection during stopping 0 : Setting is valid 1: Valid during running, cleared after stopping 2: Valid during running, cleared after receiving the stop command LED thousands: \wedge / \vee keys and analog potentiometer integral function 0 : The Integral function is valid 1: The Integral function is invalid	
F07.40	Integral ratio of the keypad potentiometer	0.01~10.00s	0.10s
F08.09	UP/DOWN terminal control setting	0x000-0x221 Ones place: Frequency setting selection 0 : The setting made through UP/DOWN is valid. 1: The setting made through UP/DOWN is invalid. Ones place: Frequency control selection 0 : Valid only when $\underline{F 00.03}=0$ or $\underline{F 00.04}=0$ 1: Valid for all frequency setting methods 2: Invalid for multi-step speed running when multi-step speed running has the priority Hundreds place: Action selection for stop 0 : Setting is valid. 1: Valid during running, cleared after stop 2: Valid during running, cleared after a stop command is received	0x000
F08.10	Frequency increment change rate of the UP	0.01-50.00 Hz/s	$0.50 \mathrm{~Hz} / \mathrm{s}$

Function code	Name	Description	Default
	terminal		
$\underline{\text { F08.11 }}$	Frequency decrement change rate of the DOWN terminal	$0.01-50.00 \mathrm{~Hz} / \mathrm{s}$	$0.50 \mathrm{~Hz} / \mathrm{s}$
$\underline{\text { F18.00 }}$	Set frequency	$0.00 \mathrm{~Hz}-\underline{\text { F00.07 (Max. output frequency) }}$	0.00 Hz
$\underline{\text { F18.02 }}$	Ramp reference frequency	$0.00 \mathrm{~Hz}-\underline{\mathrm{F00.07}}$ (Max. output frequency)	0.00 Hz
$\underline{\text { F18.14 }}$	Digital adjustment value	$0.00 \mathrm{~Hz}-\underline{\text { F00.07 }}$	0.00 Hz

5.5.9 Analog input

The VFD provides two analog input terminals, which are Al1 supporting $0-10 \mathrm{~V} / 0-20 \mathrm{~mA}$, (whether the input is voltage or current can be set by F08.53), and AI2 supporting -10-10V, and two high-speed pulse input terminals. Each input can be filtered separately, and the corresponding reference curve can be set by adjusting the reference corresponds to the max. value and min. value.

Related parameter list:

Function code	Name	Description	Default
F08.06	HI input type	$0 \times 00-0 \times 11$ Ones place: H11 input type $0:$ High-speed pulse input	0

Basic operation guidelines

Function code	Name	Description	Default
		1: Digital input Tens place: HI2 input type 0 : High-speed pulse input 1: Digital input	
F08.27	Al1 lower limit	0.00V-F08.29	0.00 V
F08.28	Corresponding setting of Al1 lower limit	-300.0\%-300.0\%	0.0\%
F08.29	Al1 upper limit	F08.27-10.00V	10.00 V
F08.30	Corresponding setting of Al1 upper limit	-300.0\%-300.0\%	100.0\%
F08.31	Al1 input filter time	0.000s-10.000s	0.030s
F08.32	AI2 lower limit	-10.00V-F08.34	-10.00V
F08.33	Corresponding setting of AI2 lower limit	-300.0\%-300.0\%	-100.0\%
F08.34	Al2 middle value 1	F08.32-F08.36	0.00 V
F08.35	Corresponding setting of Al2 middle value 1	-300.0\%-300.0\%	0.0\%
F08.36	Al2 middle value 2	F08.34-F08.38	0.00 V
F08.37	Corresponding setting of Al2 middle value 2	-300.0\%-300.0\%	0.0\%
F08.38	AI2 upper limit	F08.36-10.00V	10.00 V
F08.39	Corresponding setting of AI2 upper limit	-300.0\%-300.0\%	100.0\%
F08.40	Al2 input filter time	0.000s-10.000s	0.030s
F08.41	HI1 high-speed pulse input function selection	0 : Input set through frequency 1: Reserved 2: Input set through encoder, used together with HI2	0

Function code	Name	Description	Default
F08.42	HI1 lower limit frequency	$0.000 \mathrm{kHz}-\underline{\text { F08.44 }}$	0.000 kHz
F08.43	Corresponding setting of HI1 lower limit frequency	$-300.0 \%-300.0 \%$	0.0%
F08.44	HI1 upper limit frequency	F08.42-50.000kHz	50.000 kHz
F08.45	Corresponding setting of HI1 upper limit frequency	$-300.0 \%-300.0 \%$	100.0%
F08.46	HI1 frequency input filter time	0.000s-10.000s	0.030 s
F08.47	HI2 high-speed pulse input function selection	$0:$ Input set through frequency $1:$ Reserved $2: ~ I n p u t ~ s e t ~ t h r o u g h ~ e n c o d e r, ~ u s e d ~$ together with HI1	0
F08.48	HI2 lower limit frequency	$0.000 \mathrm{kHz}-\underline{\text { F08.50 }}$	

5.5.10 Analog output

The VFD provides one analog output terminal (supporting $0-10 \mathrm{~V} / 0-20 \mathrm{~mA}$) and one high-speed pulse output terminal. Analog output signals can be filtered separately, and the proportional relation can be adjusted by setting the max. value, min. value, and the percentage of their corresponding output. Analog output signals can output the motor speed, output frequency, output current, motor torque and
motor power at a certain proportion.

Terminal output is described as follows:

Setting	Function	Description
0	Running frequency	0-Max. output frequency
1	Set frequency	0-Max. output frequency
2	Ramp reference frequency	$0-\mathrm{Max}$. output frequency
3	Running speed	$0-$ Synchronous speed corresponding to max. output frequency
4	Output current (relative to VFD)	$0-$ Twice the VFD rated current
5	Output current (relative to motor)	$0-$ Twice the motor rated current
6	Output voltage	$0-1.5$ times the VFD rated voltage
7	Output power	$0-$ Twice the rated power
8	Set torque value (bipolar)	$0-$ Twice the VFD rated current. A negative value corresponds to 0.0% by default.
9	Output torque (absolute value)	$0-+/-$ (Twice the motor rated torque)
10	Al1 input	0-10V/0-20mA
11	Al2 input	$0 \mathrm{~V}-10 \mathrm{~V}$. A negative value corresponds to 0.0% by default.
12	Reserved	1
13	High-speed pulse HI1 input	$0.00-50.00 \mathrm{kHz}$
14	Value 1 set through Modbus communication	0-1000
15	Value 2 set through Modbus communication	0-1000
16	Value 1 set through PROFIBUS/CANopen	0-1000

Setting	Function	Description
	communication	
17	Value 2 set through PROFIBUS/CANopen communication	0-1000
18	Reserved	1
19	Reserved	1
20	High-speed pulse HI2 input	$0.00-50.00 \mathrm{kHz}$
21	Value 1 set through Profinet communication	$0-1000$. A negative value corresponds to 0.0% by default.
22	Torque current (bipolar)	$0-$ Three times the motor rated current. A negative value corresponds to 0.0% by default.
23	Exciting current	0 -Three times the motor rated current. A negative value corresponds to 0.0% by default.
24	Set frequency (bipolar)	$0-$ Max. output frequency. A negative value corresponds to 0.0% by default.
25	Ramp reference frequency (bipolar)	$0-$ Max. output frequency. A negative value corresponds to 0.0% by default.
26	Rotational speed (bipolar)	$0-$ Synchronous speed corresponding to max. output frequency A negative value corresponds to 0.0% by default.
27	Value 2 set through Profinet communication	0-1000
28	Reserved	1
29	Reserved	1
30	Rotational speed	$0-$ Twice the motor rated synchronous speed
31-47	Reserved	1

Related parameter list:

Function code	Name	Description	Default
F09.00	HO output type	0: Open collector high-speed pulse output 1: Open collector output	0
F09.05	AO1 output	0: Running frequency (0-Max. output frequency) 1: Set frequency (0-Max. output frequency)	0
F09.06	AO2 output	0	
F09.07	HO high-speed pulse output	0	

Function code	Name	Description	Default
		2: Ramp reference frequency (0-Max. output frequency) 3: Rotational speed (0-Speed corresponding to max. output frequency) 4: Output current (0 -Twice the VFD rated current) 5: Output current ($0-$ Twice the motor rated current) 6: Output voltage ($0-1.5$ times the VFD rated voltage) 7: Output power (0-Twice the motor rated power) 8: Set torque (0 -Twice the motor rated current) 9: Output torque (Absolute value, 0-+/- Twice the motor rated torque) 10: Al1 input ($0-10 \mathrm{~V} / 0-20 \mathrm{~mA}$) 11: AI2 input (0-10V) 12: Resvered 13: HI1 input($0.00-50.00 \mathrm{kHz}$) 14: Value 1 set through Modbus (01000) 15: Value 2 set through Modbus (01000) 16: Value 1 set through PROFIBUS/CANopen (0-1000) 17: Value 2 set through PROFIBUS/CANopen (0-1000) 18: Resvered 19: Resvered 20: HI2 input ($0.00-50.00 \mathrm{kHz}$) 21: Value 1 set through Profinet ($0-$ 1000) 22: Torque current (bipolar, 0-Triple the motor rated current) 23: Exciting current (bipolar, 0-Triple the motor rated current)	

Basic operation guidelines

Function code	Name	Description	Default
		24: Set frequency (bipolar, 0-Max. output frequency) 25: Ramp reference frequency (bipolar, 0-Max. output frequency) 26: Rotational speed (bipolar, 0-Speed corresponding to max. output frequency) 27: Value 2 set through Profinet ($0-$ 1000) 28~29: Reserved 30: Rotational speed ($0-$ Twice the motor rated synchronous speed) 31~47: Reserved	
F09.08	HO output lower limit	-300.0\%-F09.10	0.0\%
F09.09	HO output corresponding to lower limit	0.00-50.00kHz	0.00 kHz
F09.10	HO output upper limit	F09.08-300.0\%	100.0\%
F09.11	HO output corresponding to upper limit	0.00-50.00kHz	$\begin{gathered} 50.00 \\ \mathrm{kHz} \end{gathered}$
F09.12	HO output filter time	0.000s-10.000s	0.000s
F09.13	AO1 output lower limit	-300.0\%-F09.15	0.0\%
F09.14	AO1 output corresponding to lower limit	0.00V-10.00V	0.00 V
F09.15	AO1 output upper limit	F09.13-300.0\%	100.0\%
F09.16	AO1 output corresponding to upper limit	0.00V-10.00V	10.00V
F09.17	AO1 output filter time	0.000s-10.000s	0.000s
F09.18	AO2 output lower limit	-300.0\%-F09.20	0.0\%
F09.19	AO2 output corresponding to lower limit	0.00V-10.00V	0.00 V
F09.20	AO2 output upper limit	F09.18-300.0\%	100.0\%
F09.21	AO2 output corresponding to	$0.00 \mathrm{~V}-10.00 \mathrm{~V}$	10.00 V

Function code	Name	Description	Default
	upper limit		
F09.22	AO2 output filter time	$0.000 \mathrm{~s}-10.000 \mathrm{~s}$	0.000 s

5.5.11 Digital input

The VFD provides four programmable digital input terminals and two HI input terminals. All the digital input terminal functions can be programmed by function codes. HI input terminal can be set to act as high-speed pulse input terminal or common digital input terminal; if it is set to act as high-speed pulse input terminal, you can also set HI 1 or HI 2 high-speed pulse input to serve as the frequency reference and encoder signal input.

Note: Two different multifunction input terminals cannot be set as the same function.

Setting	Function	Description
0	No function	The VFD does not act even if there is signal input. Set unused terminals without functions to avoid misaction.
1	Run forward (FWD)	Control the forward/reverse running of the VFD by external terminals.
2	Run reversely (REV)	Set the VFD running mode to 3-wire control mode by this terminal.
3	Three-wire running contro	
4	Jog forward	For details about the frequency and ACC/DEC time at
jogging, refer to F10.00, F10.01 and F10.02.		

Setting	Function	Description							
	1	states of these four terminals. Note: Multi-step speed 1 is the low-order bit, multi-step speed 4 is the high-order bit.							
17	Multi-step speed terminal 2								
18	Multi-step speed terminal 3	Multistep speed 4		Multi- step speed 3					
19	Multi-step speed terminal 4								
		BIT3		BIT2		BIT0			
20	Pause multi-step speed running	Used to pause multi-step speed selection function to keep the set value in present state.							
21	ACC/DEC time selection 1	The two terminals are used to select four groups of acceleration/decoration time. (T indicates Terminal in the following table.)							
22	ACC/DEC time selection 2								
		T1	T2	ACC/D	time	Parameter			
		OFF	OFF	ACC/D	time 1	F00.13/F00.14			
		ON	OFF	ACC/D	time 2	F10.03/F10.04			
		OFF	ON	ACC/D	time 3	F10.05/F10.06			
		ON	ON	ACC/D	time 4	F10.07/F10.08			
23	Simple PLC stop reset	Used to restart simple PLC process and clear previous PLC state information.							
24	Pause simple PLC	The program pauses during PLC execution, and keeps running in present speed step. After this function is cancelled, simple PLC keeps running.							
25	Pause PID control	PID is ineffective temporarily, and the VFD maintains present frequency output.							
26	Pause wobbling frequency (stopped at the current frequency)	The VFD pauses at current output. After this function is canceled, it continues wobbling-frequency operation at current frequency.							
27	Reset wobbling frequency (back to the central frequency)	The set frequency of VFD returns to the center frequency.							
28	Counter reset	The counter is cleared.							
29	Switch between speed control and torque control	The VFD switches from torque control mode to speed control mode, or vice versa.							
30	Disable ACC/DEC	Used to ensure the VFD is not be impacted by external signals (except for stop command), and the VFD maintains the present output frequency.							

Setting	Function	Description
31	Trigger the counter	Used to enable the counter to cunt pulses.
33	Clear the frequency increase/decrease setting temporarily	When the terminal is closed, the frequency value set by UP/DOWN can be cleared to restore the reference
frequency to the frequency given by frequency command		
channel; when terminal is disconnected, it will revert to the		
frequency value after frequency increase/decrease setting.		

Related parameter list:

Function code	Name	Description	Default
F08.00	Function of DI1 terminal	0: No function	1
F08.01	Function of DI2 terminal	1: Forward running	4

Function code	Name	Description	Default
F08.02	Function of DI3 terminal	2: Reverse running 3: 3-wire control/Sin 4: Forward jogging 5: Reverse jogging 6: Coast to stop 7: Fault reset 8: Running pause 9: External fault input 10: Frequency increase (UP) 11: Frequency decrease (DOWN) 12: Clear frequency increase/decrease setting 13: Switch-over between setup main and setup auxiliary 14: Switch-over between combination setting and main setting 15: Switch-over between combination setting and setup auxiliary 16: Multi-step speed terminal 1 17: Multi-step speed terminal 2 18: Multi-step speed terminal 3 19: Multi-step speed terminal 4 20: Multi-step speed pause 21: ACC/DEC time selection 1 22: ACC/DEC time selection 2 23: Simple PLC stop reset 24: Simple PLC pause 25: PID control pause 26: Wobbling frequency pause 27: Wobbling frequency reset 28: Counter reset 29: Switching between speed control and torque control 30: ACC/DEC disabled 31: Counter trigger 32: Reserved 33: Clear frequency increase/decrease setting temporarily	7
F08.03	Function of DI4 terminal		0
F08.04	Function of HI1 terminal		0
F08.05	Function of HI2 terminal		0

Function code	Name	Description	Default
		34: DC brake 35: Switching between motor 1 and motor 2 36: Command switches to keypad 37: Command switches to terminal 38: Command switches to communication 39: Pre-exciting command 40: Zero out power consumption quantity 41: Maintain power consumption quantity 42: Source of upper torque limit switches to keypad 43: Position reference point input (valid only for DI~DI3 are valid) 44: Spindle orientation disabled 45: Spindle zeroing/local positioning zeroing 46: Spindle zero position selection 1 47: Spindle zero position selection 2 48: Spindle scale division selection 1 49: Spindle scale division selection 2 50: Spindle scale division selection 3 51: Terminal for switching between position control and speed control 52: Pulse input disabled 53: Clear position deviation cleared 54: Switch over position proportional gain 55: Enable cyclic positioning of digital position positioning 56: Emergency stop 57: Motor over-temperature fault input 59: Switch to V/F control 60: Switch to FVC control 61: PID polarity switch-over 66: Zero out encoder counting 67: Pulse increase 68: Enable pulse superimposition 69: Pulse decrease 70: Electronic gear selection 71-79: Reserved	

Function code	Name	Description	Default
F08.06	HI input type	$0 \times 00-0 \times 11$ Ones place: HI1 input type 0: High-speed pulse input 1: Digital input Tens place: HI2 input type 0: High-speed pulse input 1: Digital input	0
F08.07	Digital input filter time	0.000~1.000s	0.010s
F08.08	Terminal control mode	0 : Two-wire control 1 1: Two-wire control 2 2: Three-wire control 1 3: Three-wire control 2	0
F08.09	UP/DOWN terminal control setting	0x000-0x221 Ones place: Frequency setting selection 0 : The setting made through UP/DOWN is valid. 1: The setting made through UP/DOWN is invalid. Ones place: Frequency control selection 0 : Valid only when $\mathrm{P00.03}=0$ or $\mathrm{P00.04}=0$ 1: Valid for all frequency setting methods 2: Invalid for multi-step speed running when multi-step speed running has the priority Hundreds place: Action selection for stop 0 : Setting is valid. 1: Valid during running, cleared after stop 2: Valid during running, cleared after a stop command is received	0x000
F08.10	Frequency increment integral rate of the UP terminal	0.01-50.00Hz/s	$0.50 \mathrm{~Hz} / \mathrm{s}$
F08.11	Frequency integral rate of the DOWN terminal	0.01-50.00Hz/s	$0.50 \mathrm{~Hz} / \mathrm{s}$

Function code	Name	Description	Default
F08.12	Virtual terminal setting	$0 \times 000-0 \times 3 \mathrm{~F}$ (0: disable, 1: enable) BITO: DI1 virtual terminal BIT1: DI2 virtual terminal BIT2: DI3 virtual terminal BIT3: DI4 virtual terminal BIT4: HI1 virtual terminal BIT5: HI2 virtual terminal	0×00
F08.13	Reserved	0-65535	0
F08.14	DI1 switch-on delay	0.000-50.000s	0.000s
F08.15	DI1 switch-off delay	0.000-50.000s	0.000s
F08.16	DI2 switch-on delay	0.000-50.000s	0.000s
F08.17	DI2 switch-off delay	0.000-50.000s	0.000s
F08.18	DI3 switch-on delay	0.000-50.000s	0.000s
F08.19	DI3 switch-off delay	0.000-50.000s	0.000s
F08.20	DI4 switch-on delay	0.000-50.000s	0.000s
F08. 21	DI4 switch-off delay	0.000-50.000s	0.000s
F08.22	HI1 switch-on delay	0.000-50.000s	0.000s
F08.23	HI1 switch-off delay	0.000-50.000s	0.000s
F08.24	HI2 switch-on delay	0.000-50.000s	0.000s
F08. 25	HI2 switch-off delay	0.000-50.000s	0.000s
F08.26	Input terminal polarity	The function code is used to set the polarity of input terminals. When a bit is 0 , the input terminal is positive; when a bit is 1 , the input terminal is negative. 0x000-0x3F	0x000
F08.41	HI1 high-speed pulse input function selection	0 : Input set through frequency 1: Reserved 2: Input set through encoder, used together with HI2	0

Basic operation guidelines

Function code	Name	Description	Default
F08.42	HI1 lower limit frequency	0.000 kHz - F $\mathbf{0 8 . 4 4}$	$\begin{gathered} 0.000 \\ \mathrm{kHz} \end{gathered}$
F08.43	Corresponding setting of HI1 lower limit frequency	-300.0\%-300.0\%	0.0\%
F08.44	HI1 upper limit frequency	F08.42-50.000kHz	$\begin{gathered} 50.000 \\ \mathrm{kHz} \end{gathered}$
F08.45	Corresponding setting of HI1 upper limit frequency	-300.0\%-300.0\%	100.0\%
F08.46	HI1 frequency input filter time	0.000s-10.000s	0.030s
F08.47	HI2 high-speed pulse input function selection	0 : Input set through frequency 1: Reserved 2: Input set through encoder, used together with HI1	0
F08.48	HI2 lower limit frequency	0.000 kHz - $\underline{\text { F08.50 }}$	$\begin{gathered} 0.000 \\ \mathrm{kHz} \end{gathered}$
F08.49	Corresponding setting of HI2 lower limit frequency	-100.0\%-100.0\%	0.0\%
F08.50	HI2 upper limit frequency	F08.48 - 50.000kHz	$\begin{gathered} 50.000 \\ \mathrm{kHz} \\ \hline \end{gathered}$
F08.51	Corresponding setting of HI2 upper limit frequency	-300.0\%-300.0\%	100.0\%
F08.52	HI2 frequency input filter time	0.000s-10.000s	0.030s
F13.23	Input terminal state of present fault	0x0000~0xFFFF	0
F18.12	Digital input terminal state	0000~03F	0

5.5.12 Digital output

The VFD provides two groups of relay output terminals, one open collector DO output terminal and one high-speed pulse output (HO) terminal. All the digital output terminal functions can be programmed by function codes, of which the high-speed pulse output terminal HO can also be set to high-speed pulse output or digital output by function code.

The following table lists the function code options. A same output terminal function can be repeatedly selected.

Setting	Function	Description
0	Invalid	Output terminal has no function
1	In running	Output ON signal when there is frequency output during running
2	In forward running	Output ON signal when there is frequency output during forward running
3	In reverse running	Output ON signal when there is frequency output during reverse running
4	In jogging	Output ON signal when there is frequency output during jogging
5	VFD fault	Output ON signal when VFD fault occurred
6	Frequency level detection FDT1	Refer to F10.23 and F10.24.
7	Frequency level detection FDT2	Refer to F10.25 and F10.26.
8	Frequency reached	Refer to F10.27.
9	Running in zero speed	Output ON signal when the VFD output frequency and reference frequency are both zero.
10	Reach upper limit frequency	Output ON signal when the running frequency reaches upper limit frequency
11	Reach lower limit frequency	Output ON signal when the running frequency reached lower limit frequency
12	Ready to run	Main circuit and control circuit powers are

Setting	Function	Description
		established, the protection functions do not act; when the VFD is ready to run, output ON signal.
13	In pre-exciting	Output ON signal during pre-exciting of the VFD
14	Overload pre-alarm	Output ON signal after the pre-alarm time elapsed based on the pre-alarm threshold; refer to F13.45-F13.48 for details.
15	Underload pre-alarm	Output ON signal after the pre-alarm time elapsed based on the pre-alarm threshold; refer to F13.49-F13.50 for details.
16	Simple PLC state completed	Output signal when current stage of simple PLC is completed
17	Simple PLC cycle completed	Output signal when a single cycle of simple PLC operation is completed
23	Virtual terminal output of Modbus communication	Output corresponding signal based on the set value of Modbus; output ON signal when it is set to 1 , output OFF signal when it is set to 0
24	Virtual terminal output of POROFIBUS/CANopen communication	Output corresponding signal based on the set value of PROFIBUSICANopen; output ON signal when it is set to 1 , output OFF signal when it is set to 0
25	Reserved	1
26	DC bus voltage established	Output is valid when the bus voltage is above the undervoltage threshold of the inverter
27	Z pulse output	Output is valid when the encoder Z pulse is arrived, and is invalid after 10 ms .
28	During pulse superposition	Output is valid when the pulse superposition terminal input function is valid
29	Reserved	1
30	Positioning completed	Output is valid when position control positioning is completed
31	Spindle zeroing completed	Output is valid when spindle zeroing is completed
32	Spindle scale-division completed	Output is valid when spindle scale-division is completed
33	In speed limit	Output is valid when the frequency is limited
34	Virtual terminal output of Profinet communication	The corresponding signal is output according to the set value of Profinet communication. When it is set to 1 , the ON signal is output, and when it is

Basic operation guidelines

Setting	Function	Description
		set to 0, the OFF signal is output.
35	Reserved	\} $\\ {\hline 36} &{$ Speed/position control switch-over completed $} &{$ Output is valid when the mode switch-over is completed $} \\ {\hline 37-63} &{\text { Reserved }} &{\text { \} } \\ {\hline}\end{array}$

Related parameter list:

Function code	Name	Description	Default
F09.00	HO output type	0: Open collector high-speed pulse output. 1: Open collector output.	0
F09.01	DO output	0: Invalid 1: Running 2: Running forward 3: Running reversely 4: Jogging 5: VFD in fault 6: Frequency level detection FDT1 7: Frequency level detection FDT2 8: Frequency reached 9: Running in zero speed 10: Upper limit frequency reached 11: Lower limit frequency reached 12: Ready for running 13: Pre-exciting 14: Overload pre-alarm 15: Underload pre-alarm 16: Simple PLC stage completed 17: Simple PLC cycle completed 18: Set counting value reached 19: Designated counting value reached 20: External fault is valid 21: Reserved 22: Running time reached 23: Modbus communication virtual terminal output 24: PROFIBUS/CANopen communication	0
F09.02	HO output		0
F09.03	T1 output		1
F09.04	T2 output		5

Basic operation guidelines

Function code	Name	Description	Default
		virtual terminal output 25: Reserved 26: DC bus voltage established 27: Z pulse output 28: Superposing pulses 29: STO action 30: Positioning completed 31: Spindle zeroing completed 32: Spindle scale division completed 33: In speed limit 34: Profinet communication virtual terminal output 35: Reserved 36: Speed/position control switchover completed 37-63: Reserved	
F09.08	HO output lower limit	-300.0\%-F09.10	0.0\%
F09.09	HO output corresponding to lower limit	0.00-50.00kHz	0.00 kHz
F09.10	HO output upper limit	F09.08-300.0\%	100.0\%
F09.11	HO output corresponding to upper limit	0.00-50.00kHz	$\begin{gathered} 50.00 \\ \mathrm{kHz} \end{gathered}$
F09.12	HO output filter time	0.000s-10.000s	0.000s
F09.13	RO2 switch-off delay	0.000-50.000s	0.000s
F09.23	DO switch-on delay	0.000-50.000s	0.000s
F09.24	DO switch-off delay	0.000-50.000s	0.000s
F09.25	HO switch-on delay	0.000-50.000s (valid only whenF09.00=1)	0.000s
F09.26	HO switch-off delay	0.000-50.000s (valid only whenF09.00=1)	0.000s
F09.27	T1 switch-on delay	0.000-50.000s	0.000s
F09.28	T1 switch-off delay	0.000-50.000s	0.000s
F09.29	T2 switch-on delay	0.000-50.000s	0.000s
F09.30	T2 switch-off delay	0.000-50.000s	0.000s
F09.31	Output terminal polarity	0x0-0xF	00

Basic operation guidelines

Function code	Name	Description	Default
	selection		
F09.32	Reserved	$0-65535$	0
F09.33	Frequency reach detection value	$0-\mathrm{F00.07}$	1.00 Hz
F09.34	Frequency reach detection time	$0-3600.0 \mathrm{~s}$	0.5 s
$\underline{F 13.24}$	Output terminal status at present fault		0
$\underline{F 18.13}$	Digital output terminal status		0

5.5.13 Simple PLC

Simple PLC is a multi-step speed generator, and the VFD can change the running frequency and direction automatically based on the running time to fulfill process requirements. Previously, such function was realized with external PLC, while now, the VFD itself can achieve this function.

The VFD can realize 16 -step speeds control, and provide four groups of acceleration/deceleration time for you to choose.

After the set PLC completes one cycle (or one segment), one ON signal can be output by the multifunction relay.

Related parameter list:

Basic operation guidelines

Function code	Name	Description	Default
$\begin{aligned} & \frac{\text { F08.00 }}{} \\ & \text { F08.05 } \end{aligned}$	Digital input function selection	23: Simple PLC stop reset 24: Pause simple PLC 25: Pause PID control	
$\begin{aligned} & \text { F09.00- } \\ & \text { F09.04 } \end{aligned}$	Digital output function selection	16: Simple PLC stage reached 17: Simple PLC cycle reached	
F12.00	Multi-step speed 0	-100.0~100.0\%	0.0\%
F12.01	Multi-step speed 1	-100.0~100.0\%	0.0\%
F12.02	Multi-step speed 2	-100.0~100.0\%	0.0\%
F12.03	Multi-step speed 3	-100.0~100.0\%	0.0\%
F12.04	Multi-step speed 4	-100.0~100.0\%	0.0\%
F12.05	Multi-step speed 5	-100.0~100.0\%	0.0\%
F12.06	Multi-step speed 6	-100.0~100.0\%	0.0\%
F12.07	Multi-step speed 7	-100.0~100.0\%	0.0\%
F12.08	Multi-step speed 8	-100.0~100.0\%	0.0\%
F12.09	Multi-step speed 9	-100.0~100.0\%	0.0\%
F12.10	Multi-step speed 10	-100.0~100.0\%	0.0\%
F12.11	Multi-step speed 11	-100.0~100.0\%	0.0\%
F12.12	Multi-step speed 12	-100.0~100.0\%	0.0\%
F12.13	Multi-step speed 13	-100.0~100.0\%	0.0\%
F12.14	Multi-step speed 14	-100.0~100.0\%	0.0\%
F12.15	Multi-step speed 15	-100.0~100.0\%	0.0\%
F12.16	Simple PLC mode	0 : Stop after running once; 1: Keep running in the final value after running once; 2: Cyclic running;.	0
F12.17	Simple PLC memory selection	0 : No memory after power-off 1: Memory after power-off; PLC memories its running stage and	0

Function code	Name	Description	Default
		frequency before power-off.	
F12.18	Running time of step 0	$0.0-6553.5 \mathrm{~s}$ (min)	0.0s(min)
F12.19	Running time of step 1	0.0-6553.5s(min)	0.0s(min)
F12.20	Running time of step 2	0.0-6553.5s(min)	0.0s(min)
F12.21	Running time of step 3	0.0-6553.5s(min)	0.0s(min)
F12.22	Running time of step 4	0.0-6553.5s(min)	0.0s(min)
F12.23	Running time of step 5	0.0-6553.5s(min)	0.0s(min)
F12.24	Running time of step 6	0.0-6553.5s(min)	0.0s(min)
F12.25	Running time of step 7	0.0-6553.5s(min)	0.0s(min)
F12.26	Running time of step 8	0.0-6553.5s(min)	0.0s(min)
F12.27	Running time of step 9	0.0-6553.5s(min)	0.0s(min)
F12.28	Running time of step 10	0.0-6553.5s(min)	0.0s(min)
F12.29	Running time of step 11	0.0-6553.5s(min)	0.0s(min)
F12.30	Running time of step 12	0.0-6553.5s(min)	0.0s(min)
F12.31	Running time of step 13	0.0-6553.5s(min)	0.0s(min)
F12.32	Running time of step 14	0.0-6553.5s(min)	0.0s(min)
F12.33	Running time of step 15	0.0-6553.5s(min)	0.0s(min)
F12.34	ACC/DEC time of steps 0-7 of simple PLC	:0x0000-0xFFFF	0x0000
F12.35	ACC/DEC time of steps 815 of simple PLC	0x0000~0XFFFF	0x0000
F12.36	PLC restart mode	0: Restart from the first step1: Continue running from the step frequency when interruption occurred,	0
F12.37	Multi-step time unit	0 : second; the running time of each step is counted in seconds; 1: minute; the running time of each step	0

Basic operation guidelines

Function code	Name	Description	Default
		is counted in minutes	
$\underline{\text { F18.00 }}$	Set frequency	$0.00 \mathrm{~Hz}-\underline{\text { F00.07 (Max. output frequency) }}$	0.00 Hz
$\underline{\text { F18.27 }}$	Simple PLC and present stage number of multi-step speed	Displays the present stage of the simple PLC function.	0

5.5.14 Multi-step speed running

The VFD can set 16 -step speeds, which are selectable by multi-step speed terminals $1-4$, corresponding to multi-step speed 0 to multi-step speed 15.

Related parameter list:

Function code	Name	Description	Default
F08.00-F08.03	Digital input function selection	16: Multi-step speed terminal 1 17: Multi-step speed terminal 2 18: Multi-step speed terminal 3 19: Multi-step speed terminal 4 20: Pause multi-step speed running	
F12.00	Multi-step speed 0	-100.0~100.0\%	0.0%
F12.01	Multi-step speed 1	$-100.0 \sim 100.0 \%$	0.0%
F12.02	Multi-step speed 2	$-100.0 \sim 100.0 \%$	0.0%
F12.03	Multi-step speed 3	$-100.0 \sim 100.0 \%$	0.0%

Basic operation guidelines

Function code	Name	Description	Default
F12.04	Multi-step speed 4	-100.0~100.0\%	0.0\%
F12.05	Multi-step speed 5	-100.0~100.0\%	0.0\%
F12.06	Multi-step speed 6	-100.0~100.0\%	0.0\%
F12.07	Multi-step speed 7	-100.0~100.0\%	0.0\%
F12.08	Multi-step speed 8	-100.0~100.0\%	0.0\%
F12.09	Multi-step speed 9	-100.0~100.0\%	0.0\%
F12.10	Multi-step speed 10	-100.0~100.0\%	0.0\%
F12.11	Multi-step speed 11	-100.0~100.0\%	0.0\%
F12.12	Multi-step speed 12	-100.0~100.0\%	0.0\%
F12.13	Multi-step speed 13	-100.0~100.0\%	0.0\%
F12.14	Multi-step speed 14	-100.0~100.0\%	0.0\%
F12.15	Multi-step speed 15	-100.0~100.0\%	0.0\%
F12.18	Running time of step 0	0.0-6553.5s(min)	0.0s(min)
F12.19	Running time of step 1	$0.0-6553.5 \mathrm{~s}$ (min)	0.0s(min)
F12.20	Running time of step 2	0.0-6553.5s(min)	0.0s(min)
F12.21	Running time of step 3	0.0-6553.5s(min)	0.0s(min)
F12.22	Running time of step 4	0.0-6553.5s(min)	0.0s(min)
F12.23	Running time of step 5	0.0-6553.5s(min)	0.0s(min)
F12.24	Running time of step 6	0.0-6553.5s(min)	0.0s(min)
F12.25	Running time of step 7	$0.0-6553.5 \mathrm{~s}$ (min)	0.0s(min)
F12.26	Running time of step 8	$0.0-6553.5 \mathrm{~s}$ (min)	0.0s(min)
F12.27	Running time of step 9	0.0-6553.5s(min)	0.0s(min)
F12.28	Running time of step 10	0.0-6553.5s(min)	0.0s(min)
F12.29	Running time of step 11	0.0-6553.5s(min)	0.0s(min)

Basic operation guidelines

Function code	Name	Description	Default
F12.30	Running time of step 12	$0.0-6553.5 \mathrm{~s}(\mathrm{~min})$	$0.0 \mathrm{~s}(\mathrm{~min})$
F12.31	Running time of step 13	$0.0-6553.5 \mathrm{~s}(\mathrm{~min})$	$0.0 \mathrm{~s}(\mathrm{~min})$
F12.32	Running time of step 14	$0.0-6553.5 \mathrm{~s}(\mathrm{~min})$	$0.0 \mathrm{~s}(\mathrm{~min})$
F12.33	Running time of step 15	$0.0-6553.5 \mathrm{~s}(\mathrm{~min})$	$0.0 \mathrm{~s}(\mathrm{~min})$
F12.34	ACC/DEC time of steps 0-7 of simple PLC	$: 0 \times 0000-0 \times F F F F$	0×0000
F12.35	ACC/DEC time of steps 8-15 of simple PLC	$0 \times 0000 \sim 0 \times F F F F$	0×0000
F18.27	Simple PLC and present stage number of multi-step speed	Displays the present stage of the simple PLC function.	0

5.5.15 PID control

PID control, a common mode for process control, is mainly used to adjust the VFD output frequency or output voltage through performing scale-division, integral and differential operations on the difference between feedback signal of controlled variables and signal of the target, thus forming a negative feedback system to keep the controlled variables above the target. It is suitable for flow control, pressure control, temperature control, etc. Diagram of basic principles for output frequency regulation is shown in the figure below.

Introduction to the working principles and control methods for PID control

Proportional control (Kp): When the feedback deviates from the reference, the output will be proportional to the deviation, if such deviation is constant, the regulating variable will also be constant. Proportional control can respond to feedback changes rapidly, however, it cannot eliminate the error by itself. The larger the proportional gain, the faster the regulating speed, but too large gain will result in oscillation. To solve this problem, first, set the integral time to a large value and the derivative time to 0 , and run the system by proportional control, and then change the reference to observe the deviation between feedback signal and the reference (static difference), if the static difference is (e.g., increase the reference, and the feedback variable is always less than the reference after system stabilizes), continue increasing the proportional gain, otherwise, decrease the proportional gain; repeat such process until the static error becomes small.

Integral time (Ti): When feedback deviates from reference, the output regulating variable accumulates continuously, if the deviation persists, the regulating variable will increase continuously until deviation disappears. Integral regulator can be used to eliminate static difference; however, too large regulation may lead to repetitive overshoot, which will cause system instability and oscillation. The feature of oscillation caused by strong integral effect is that the feedback signal fluctuates up and down based on the reference variable, and fluctuation range increases gradually until oscillation occurred. Integral time parameter is generally regulated gradually from large to small until the stabilized system speed fulfills the requirement.

Derivative time (Td): When the deviation between feedback and reference changes, output the regulating variable which is proportional to the deviation variation rate, and this regulating variable is only related to the direction and magnitude of the deviation variation rather than the direction and magnitude of the deviation itself. Differential control is used to control the feedback signal variation based on the variation trend. Differential regulator should be used with caution as it may easily enlarge the system interferences, especially those with high variation frequency.

When the frequency command selection ($\underline{F 00.03}, \underline{F 00.04)}$) 7 or the voltage setting channel selection (F04.15) is 6, the VFD is process PID controlled.

5.5.15.1 General procedures for PID parameter settings

a. Determining proportional gain P

When determining proportional gain P, first, remove the integral term and derivative term of PID by making $\mathrm{Ti}=0$ and $\mathrm{Td}=0$ (refer to PID parameter setup for details), thus turning PID into pure proportional control. Set the input to $60 \%-70 \%$ of the max. allowable value, and increase proportional gain P gradually from 0 until system oscillation occurred, and then in turn, decrease proportional gain P gradually from current value until system oscillation disappears, record the proportional gain P at this point and set the proportional gain P of PID to $60 \%-70 \%$ of current value. This is whole commissioning process of proportional gain P.
b. Determine integral time Ti

After proportional gain P is determined, set the initial value of a larger integral time Ti , and decrease Ti gradually until system oscillation occurred, and then in turn, increase Ti until system oscillation
disappears, record the Ti at this point, and set the integral time constant Ti of PID to $150 \%-180 \%$ of current value. This is the commissioning process of integral time constant Ti .
c. Determining derivative time Td

The derivative time Td is generally set to 0 .
If you need to set Td to another value, set in the same way with P and Ti , namely set Td to 30% of the value when there is no oscillation.
d. Empty system load, perform load-carrying joint debugging, and then fine-tune PID parameter until fulfilling the requirement.

5.5.15.2 PID adjusting methods

After setting the parameters controlled by PID, you can adjust these parameters by the following means.

Control overshoot: When overshoot occurred, shorten the derivative time (Td) and prolong integral time (Ti).

Stabilize the feedback value as fast as possible: when overshoot occurred, shorten integral time (Ti) and prolong derivative time (Td) to stabilize control as fast as possible.

Control long-term vibration: If the cycle of periodic vibration is longer than the set value of integral time (Ti), it indicates the integral action is too strong, prolong the integral time (Ti) to control vibration.

Control short-term vibration: If the vibration cycle is short is almost the same with the set value of derivative time (Td), it indicates derivative action is too strong, shorten the derivative time (Td) to control vibration. When derivative time (Td) is set to 0.00 (namely no derivative control), and there is no way to control vibration, decrease the proportional gain.

Related parameter list:

Function code	Name	Description	Default
F11.00	PID reference source	0: Keypad (F011.01) 1: Al1 2: Al2 3: Reserved 4: High-speed pulse HI1 5: Multi-step running 6: Modbus communication 7: Profibus/CANopen communication 8: Reserved 9: High-speed pulse HDIB 10: Profinet communication 11: Reserved 12: Reserved	0

Function code	Name	Description	Default
F11.01	PID reference preset through keypad	-100.0\%-100.0\%	0.0\%
F11.02	PID feedback source	```0: Al1 1: Al2 2: Reserved 3: HI2 4: Modbus communication 5: PROFIBUS/CANopen communication 6: Reserved 7: HI2 8: Profinet communication 9: Reserved 10: Reserved.```	0
F11.03	PID output characteristics selection	0 : PID output is positive characteristic 1: PID output is negative characteristic	0
F11.04	Proportional gain $(K p)$	0.00-100.00	1.80
F11.05	Integral time (Ti)	0.01-10.00s	0.90s
F11.06	Differential time (Td)	0.00-10.00s	0.00s
F11.07	Sampling period (T)	0.000-10.000s	0.100s
F11.08	PID control deviation limit	0.0-100.0\%	0.0\%
F11.09	PID output upper limit	F11.10-100.0\% (max. frequency or voltage)	100.0\%
F11.10	PID output lower \qquad	-100.0\%-F11.09 (max. frequency or voltage)	0.0\%
F11.11	Feedback offline detection value	0.0-100.0\%	0.0\%
F11.12	Feedback offline detection time	0.0-3600.0s	1.0s
F11.13	PID control selection	$0 \times 0000-0 \times 1111$ Ones: 0 : Continue integral control after the frequency reaches upper/lower limit 1: Stop integral control after the frequency	0x0001

Function code	Name	Description	Default
		reaches upper/lower limit Tens: 0 : The same with the main reference direction 1: Contrary to the main reference direction Hundreds: 0 : Limit based on the max. frequency 1: Limit based on A frequency Thousands: 0 : Main+ Auxiliary frequency, acceleration /DEC of main reference frequency source buffering is invalid 1: Main+ Auxiliary frequency, acceleration/ DEC of main reference frequency source buffering is valid, acceleration and DEC are determined by F11.07 (acceleration time 4).	
F11.14	Low frequency proportional gain (Kp)	0.00-100.00	1.00
F11.15	ACC/DEC time of PID command	0.0-1000.0s	0.0s
F11.16	PID output filter time	0.000-10.000s	0.000s
F11.17	Reserved	-100.0-100.0\%	0.0\%
F11.18	Low frequency integral time (Ti)	0.00-10.00s	0.90s
F11.19	Low frequency differential time (Td)	0.00-10.00s	0.00s
F11.20	Low frequency point for PID parameter switching	0.00-F11.21	5.00 Hz
F11.21	High frequency point for PID parameter switching	F11.20-F00.04	10.00 Hz
F18.00	Set frequency	0.00Hz- (Max. output frequency)	0.00Hz
F18.23	PID reference value	-100.0-100.0\%	0.0\%
F18.24	PID feedback value	-100.0-100.0\%	0.0\%

5.5.16 Running at wobbling frequency

Wobbling frequency is mainly applied in cases where transverse movement and winding functions are needed like textile and chemical fiber industries. The typical working process is shown as below.

Function code	Name	Description	Default
F00.07	Max. output frequency	-630.00Hz	50.00 Hz
F00.03	Main frequency source setting	0: Keypad 1: Al1 2: Al2 3: Reserved 4: High-speed pulse HI1 5: Simple PLC program 6: Multi-step speed running 7: PID control 8: Modbus communication 9: Profibus/CANopen communication 10: Reserved 11: High-speed pulse HI2 12: Pulse train $A B$ 13: Profinet communication 14: Reserved 15: Reserved	0
F00.13	ACC time 1	0.0-3600.0s	Model depended
F00.14	DEC time 1	0.0-3600.0s	Model

Function code	Name	Description	Default
$\underline{\underline{F 08.00}-}$	Digital input function selection	26: Wobbling frequency pause (stop at current frequency) 27: Wobbling frequency reset (revert to center frequency)	depended
$\underline{\text { F10.15 }}$	Amplitude of wobbling frequency	$0.0-100.0 \%$ (relative to set frequency)	0.0%
$\underline{F 10.16}$	Amplitude of jump frequency	$0.0-50.0 \%$ (relative to amplitude of wobbling frequency)	0.0%
F10.17	Wobbling frequency rise time	$0.1-3600.0 \mathrm{~s}$	5.0 s
$\underline{F 10.18}$	Wobbling frequency fall time	$0.1-3600.0 \mathrm{~s}$	5.0 s

5.5.17 Local encoder input

The VFD supports pulse count function by inputting the count pulse from HI high-speed pulse port. When the actual count value is no less than the set value, digital output terminal will output count-value-reached pulse signal, and the corresponding count value will be zeroed out.

Function code	Name	Description	Default
F08.06	HI input type	$0 \times 00-0 \times 11$ Unit place: HI1 input type 0: High-speed pulse input 1: Digital input Tens place: HI2 input type 0: High-speed pulse input 1: Digital input	0
F08.41	HI1 high-speed pulse input function selection	0: Input set through frequency 1: Reserved 2: Input set through encoder, used together with HI2	0
F08.47	HI2 high-speed pulse input function selection	0: Input set through frequency 1: Reserved 2: Input set through encoder, used	0

Function code	Name	Description	Default
		together with HI1	
$\underline{\text { F19.00 }}$	Actual frequency of encoder	$-999.9-3276.7 \mathrm{~Hz}$	0.0 Hz
F22.22	Speed measurement mode	0: PG card 1: Local; realized by HI1 and HI2; supports incremental 24V encoder only	0

5.5.18 Commissioning procedures for closed-loop control

1. Commissioning procedures for closed-loop vector control of asynchronous motor

Step 1: Restore to default value via keypad
Step 2: Set , F00.08 and F01 group motor nameplate parameters
Step 3: Motor parameter autotuning
Carry out rotary parameter autotuning or static parameter autotuning via keypad, if the motor can be disconnected from load, then it is users can carry out rotary parameter autotuning; otherwise, carry out static parameter autotuning, the parameter obtained from autotuning will be saved in F02 motor parameter group automatically.

Step 4: Verify whether the encoder is installed and set properly
a) Confirm the encoder direction and parameter setup

Set $\underline{F 02.01}$ (encoder pulse-per-revolution), set $\underline{F 00.01}=2$ and $\underline{F 00.10}=20 \mathrm{~Hz}$, and run the VFD, at this point, the motor rotates at 20 Hz , observe whether the speed measurement value of $\underline{\mathrm{F} 19.00}$ is correct, if the value is negative, it indicates the encoder direction is reversed, under such situation, set F02.02 to 1 ; if the speed measurement value deviates greatly, it indicates $\mathrm{F02.01}$ is set improperly. Observe whether F19.02 (encoder Z pulse count value) fluctuates, if yes, it indicates the encoder suffers interference or F02.01 is set improperly, requiring users to check the wiring and the shielding layer.
b) Determine Z pulse direction

Set $\mathrm{F} 00.10=20 \mathrm{~Hz}$, and set $\mathrm{F00.11}$ (running direction) to forward and reverse direction respectively to observe whether the difference value of F 19.01 is less than 5 , if the difference value remains to be larger than 5 after setting Z pulse reversal function of F02.02, power off and exchange phase A and phase B of the encoder, and then observe the difference between the value of $F 19.02$ during forward and reverse rotation. Z pulse direction only affects the forward/reverse positioning precision of the spindle positioning carried out with Z pulse.

Step 5: Closed-loop vector pilot-run

Set F00.01=1, and carry out closed-loop vector control, adjust F00.10 and speed loop and current loop PI parameter in FO group to make it run stably in the whole range.

Step 6: Flux-weakening control
Set flux-weakening regulator gain $\underline{F 03.17}=0-8000$, and observe the flux-weakening control effect. F03.19-F03.20 can be adjusted as needed.

2. Commissioning procedures for closed-loop vector control of synchronous motor

Step 1: Set F17.01=1, restore to default value
Step 2: Set $\underline{F 00.011=1(F V C), ~ s e t ~ F 00.07}, \underline{F 00.07}$, and motor nameplate parameters in F01 group.
Step 3: Set F02.01 encoder parameter.
When the encoder is resolver-type encoder, set the encoder pulse count value to (resolver pole pair number $\times 1024$), e.g., if pole pair number is 4 , set $\underline{\text { F02.01 }}$ to 4096 .

Step 4: Ensure the encoder is installed and set correctly
When motor stops, observe whether F19.21 (resolver angle) fluctuates, if it fluctuates sharply, check the wiring and grounding. Rotates the motor slowly, observe whether F19.21 changes accordingly. If yes, it indicates motor is connected correctly; if the value of F 19.02 keeps constant at a non-zero value after rotating for multiple circles, it indicates encoder Z signal is correct.

Step 5: Closed-loop vector pilot-run
Adjust F00.10 and speed loop and current loop PI parameter in F03 group to make it run stably in the whole range. If oscillation occurred, reduce the value of F03.00, F03.03, F03.13 and F03.14. If current oscillation noise occurred during low speed, adjust F29.05.

Note: It is necessary to re-determine F02.02 (encoder direction) and carry out magnetic pole position autotuning again if the wiring of motor or encoder is changed.

5.5.19 Fault handling

The following provides fault handling information.

Related parameter list:

Function code	Name	Description	Default
F13.11	Present fault type	0: No fault	
F13.12	Last fault type	1: Inverter unit U-phase protection	
F13.13	2nd-last fault type	2: Inverter unit V-phase protection	
F13.14	3rd-last fault type	3: Inverter unit W-phase protection	
F13.15	4th-last fault type	4: Overcurrent during acceleration	
F13.16	5th-last fault type	5: Overcurrent during deceleration	

Function code	Name	Description	Default
		6: Overcurrent during constant speed running 7: Overvoltage during acceleration 8: Overvoltage during deceleration 9: Overvoltage during constant speed running 10: Bus undervoltage fault 11: Motor overload 12: VFD overload 13: Phase loss on input side 14: Phase loss on output side 15: Rectifier module overheat 16: Inverter module overheat 17: External fault 18: Modbus communication fault 19: Current detection fault 20: Motor autotuning fault 21: EEPROM operation error 22: PID feedback offline fault 23: Braking unit fault 24: Running time reached 25: Electronic overload 26: Keypad communication error 27: Parameter upload error 28: Parameter download error 29: Profibus communication fault 30: Reserved 31: CANopen communication fault 32: To-ground short-circuit fault 1 33: To-ground short-circuit fault 2 34: Speed deviation fault 35: Mal-adjustment fault 36: Underload fault 37: Encoder disconnection fault 38: Encoder direction reversal fault 39: Encoder Z-pulse disconnection fault 40~43: Reserved 44: Safety code FLASH CRC fault	

Function code	Name	Description	Default
		45~54: Reserved 55: Duplicate extension card type 56: Encoder UVW lost 57: Profinet communication fault 58: CAN communication fault 59: Motor overtemperature fault 60: Failure to identify the card at slot 1 61: Failure to identify the card at slot 2 62: Failure to identify the card at slot 3 63: Communication timeout of the card at slot 1 64: Communication timeout of the card at slot 2 65: Communication timeout of the card at slot 3 66: Reserved 67: Bacnet communication fault 68: Reserved 69: CAN slave fault in master/slave synchronization	
F13.17	Running frequency at present fault	$0.00 \mathrm{~Hz} \mathrm{\sim} \underline{\underline{00.07}}$	0.00Hz
F13.18	Ramp reference frequency at present fault	$0.00 \mathrm{~Hz} \mathrm{\sim}$	0.00Hz
F13.19	Output voltage at present fault	0~1200V	OV
F13.20	Output current at present fault	0.0~6300.0A	0.0A
F13.21	Bus voltage at present fault	0.0~2000.0V	0.0V
F13.22	Max. temperature at present fault	-20.0~120.0 ${ }^{\circ} \mathrm{C}$	$0.0{ }^{\circ} \mathrm{C}$
F13.23	Input terminal status at present fault	0x0000~0xFFFFF	0
F13.24	Output current status at present fault	0x0000~0xFFFF	0

Basic operation guidelines

Function code	Name	Description	Default
F13.25	Running frequency at last fault	$0.00 \mathrm{~Hz} \mathrm{\sim F} \underline{00.07}$	0.00Hz
F13.26	Ramp reference frequency at last fault	$0.00 \mathrm{~Hz} \mathrm{\sim} \sim 00.07$	0.00Hz
F13.27	Output voltage at last fault	0~1200V	OV
F13.28	Output current at last fault	0.0~6300.0A	0.0A
F13.29	Bus voltage at last fault	0.0~2000.0V	0.0V
F13.30	Max. temperature at last fault	$-20.0 \sim 120.0^{\circ} \mathrm{C}$	$0.0^{\circ} \mathrm{C}$
F13.31	Input terminal status at last fault	0x0000~0xFFFF	0
F13.32	Output terminal status at last fault	0x0000~0xFFFF	0
F13.33	Running frequency at 2nd-last fault	$0.00 \mathrm{~Hz} \mathrm{\sim} \sim \underline{00.07}$	0.00Hz
F13.34	Ramp reference frequency at 2nd-last fault	$0.00 \mathrm{~Hz} \mathrm{\sim}$ F00.07	0.00Hz
F13.35	Output voltage at 2nd-last fault	0~1200V	OV
F13.36	Output current at 2nd-last fault	0.0~6300.0A	0.0A
F13.37	Bus voltage at 2nd-last fault	0.0~2000.0V	0.0V
F13.38	Max. temperature at 2nd-last fault	-20.0~120.0 ${ }^{\circ} \mathrm{C}$	$0.0^{\circ} \mathrm{C}$
F13.39	Input terminal status at 2nd-last fault	0x0000~0xFFFF	0
F13.40	Output terminal status at 2nd-last fault	0x0000~0xFFFF	0
F13.41	Fault output terminal action upon fault occurring	$0 \times 00-0 \times 11$ Ones: 0 : Act at undervoltage 1: Do not act at undervoltage	0x00

Function code	Name	Description	Default
		Tens: 0 : Act at fault reset 1: Do not act at fault reset	
F13.42	Frequency drop at transient power-off	0 : Disable 1: Enable	0
F13.43	Reserved	0-65535	0
F13.44	Automatic frequency reduction during voltage drop	0-1 0 : Invalid 1: Valid	0
F13.45	Pre-alarm selection for VFD/motor OL/UL	0x000-0×1132 Ones: 0: Motor overload/underload pre-alarm, relative to rated motor current; 1: VFD overload/underload pre-alarm, relative to rated VFD current. Tens: 0 : The VFD continues running after overload/underload alarm; 1: The VFD continues running after underload alarm, and stops running after overload fault; 2: The VFD continues running after overload alarm, and stops running after underload fault; 3: The VFD stops running after overload/underload fault. Hundreds: 0 : Always detect 1: Detect during constant-speed running Thousands: VFD overload current reference selection 0 : Related to current calibration coefficient 1: Irrelated to current calibration coefficient	0x000
F13.46	Enabling VFD overload integral	0: Disable 1: Enable	0
F13.47	Overload pre-alarm	F13.49-200\%	G type:

Basic operation guidelines

Function code	Name	Description	Default
	detection level		150% P type: 120%
F13.48	Overload pre-alarm detection time	$0.1^{\sim} 3600.0 \mathrm{~s}$	1.0 s
F13.49	Underload pre-alarm detection level	$0-$ F13.47	50%
F13.50	Underload pre-alarm detection time	$0.1^{\sim} 3600.0 \mathrm{~s}$	1.0 s
F13.51	Speed deviation detection value	$0.0-50.0 \%$	10.0%
F13.52	Speed deviation detection time	$0.0-10.0 \mathrm{~s}$	2.0 s
F13.53	Energy braking for stop	$0:$ Enable	
$1:$ Disable	0		

8 Function parameter list

6.1 What this chapter contains

This chapter lists all the function codes and corresponding description of each function code.

6.2 Function parameter list

The function parameters of the VFD are divided into groups by function. Among the function parameter groups, the F98 group is the analog input and output calibration group, while the F99 group contains the factory function parameters, which are user inaccessible. Each group includes several function codes (each function code identifies a function parameter). A three-level menu style is applied to function codes. For example, "F08.08" indicates the 8th function code in the F08 group.

The function group numbers correspond to the level- 1 menus, the function codes correspond to the level-2 menus, and the function parameters correspond to the level-3 menus.

1. The content of the function code table is as follows:

Column 1 "Function code ": Code of the function group and parameter
Column 2 "Name": Full name of the function parameter
Column 3 "Description": Detailed description of the function parameter
Column 4 "Default": Initial value set in factory
Column 5 "Modify": Whether the function parameter can be modified, and conditions for the modification
" O " indicates that the value of the parameter can be modified when the VFD is in stopped or running state.
" \bigcirc " indicates that the value of the parameter cannot be modified when the VFD is in running state.
"- " indicates that the value of the parameter is detected and recorded, and cannot be modified.
(The VFD automatically checks and constrains the modification of parameters, which helps prevent incorrect modifications.)
2. The parameters adopt the decimal system (DEC). If the hexadecimal system is adopted, all bits are mutually independent on data during parameter editing, and the setting ranges at some bits can be hexadecimal ($0-\mathrm{F}$).
3. "Default" indicates the factory setting of the function parameter. If the value of the parameter is detected or recorded, the value cannot be restored to the factory setting.
4. To better protect parameters, the VFD provides the password protection function. After a password is set (that is, F 17.00 is set to a non-zero value), "0.0.0.0.0" is displayed when you press the ENT key to enter the function code editing interface. You need to enter the correct user password
to enter the interface. For the factory parameters, you need to enter the correct factory password to enter the interface. (You are not advised to modify the factory parameters. Incorrect parameter setting may cause operation exceptions or even damage to the VFD.) If password protection is not in locked state, you can change the password any time. You can set F 17.00 to 0 to cancel the user password. When F 17.00 is set to a non-zero value during power-on, parameters are prevented from being modified by using the user password function. When you modify function parameters through serial communication, the user password protection function is also applicable and compliant with the same rule.

| Function
 code | Name | Description | Setting
 range | Default | Modify |
| :---: | :---: | :---: | :---: | :---: | :---: | SN

FOO group-Basic functions

F00.00	VFD type	$\begin{aligned} & 0: \text { G type } \\ & \text { 1: P type } \end{aligned}$	0~1	0	O	0.
F00.01	Speed control mode	0: Sensorless vector control (SVC) mode 1: Closed-loop vector control mode 2: Space voltage vector control mode Note: To select 0 or 1 as the control mode, enable the VFD to perform motor parameter autotuning first.	0~2	2	0	1.
F00.02	Channel of running commands	0: Keypad 1: Terminal 2: Communication	0~2	0	\bigcirc	2.
F00.03	Main frequency source setting	$\begin{aligned} & \text { 0: Keypad } \\ & \text { 1: Al1 } \end{aligned}$	0~15	0	\bigcirc	3.
F00.04	Auxiliary frequency source setting	2: Al2 3: Reserved 4: High-speed pulse HI1 5: Simple PLC program 6: Multi-step speed running 7: PID control 8: Modbus communication 9: Profibus/CANopen communication 10: Reserved 11: High-speed pulse HI2 12: Pulse train $A B$ 13: Profinet communication 14: Reserved 15: Reserved	0~15	15	-	4.
F00.05	Reference object of	0: Max. output frequency	0~1	0	\bigcirc	5.

Function code	Name	Description	Setting range	Default	Modify	SN
	Auxiliary frequency	1: Main frequency command				
F00.06	Combination mode of setting source	0 : Main frequency 1: Auxiliary frequency 2: (Main + Auxiliary) 3: (Main - Auxiliary) 4: Max(Main, Auxiliary) 5: Min. (Main, Auxiliary)	0~5	0	\bigcirc	6.
F00.07	Max. output frequency	Used to set the max. output frequency of the VFD. Pay attention to the function code because it is the foundation of the frequency setting and the speed of acceleration (ACC) and deceleration (DEC) Setting range: Max (F00.08, 10.00)-630.00Hz	$\begin{aligned} & \text { Max } \\ & \text { (F00.08, } \\ & 10.00) \sim \\ & 630.00 \end{aligned}$	50.00 Hz	\bigcirc	7.
F00.08	Upper limit of running frequency	The upper limit of the running frequency is the upper limit of the output frequency of the VFD, which is lower than or equal to the max. output frequency. When the set frequency is higher than the upper limit of the running frequency, the upper limit of the running frequency is used for running. Setting range: F00.09-F00.07 (Max. output frequency)	$\begin{aligned} & \text { F00.09~F0 } \\ & 0.07 \end{aligned}$	50.00 Hz	\bigcirc	8.
F00.09	Lower limit of running frequency	The lower limit of the running frequency is the lower limit of the output frequency of the VFD, When the set frequency is lower than the lower limit of the running frequency, the lower limit of the running frequency is used for running. Note: Max. output frequency \geq Upper limit of frequency \geq Lower limit of frequency Setting range: 0.00 Hz - (Upper limit of running frequency)	$\begin{aligned} & 0.00 \sim \mathrm{~F} 00.0 \\ & 8 \end{aligned}$	0.00Hz	\bigcirc	9.
F00.10	Frequency set through keypad	When A and B frequency commands select the keypad for setting, the value of the function code is the original setting one of the frequency data of the VFD. Setting range: $0.00 \mathrm{~Hz}-\mathrm{F00.07}$ (Max. output	$\left[\begin{array}{l} 0.00 \sim \mathrm{~F} 00.0 \\ 7 \\ \hline \end{array}\right.$	50.00 Hz	-	10.

Function parameter list

Function code	Name	Description	Setting range	Default	Modify	SN
		10% for each increase of 1 k carrier frequency. Setting range: $1.2-15.0 \mathrm{kHz}$				
F00.13	ACC time 1	ACC time means the time needed if the VFD speeds up from OHz to the max. output	0.0~3600.0	Model depended	\bigcirc	13.
F00.14	DEC time 1	frequency (F00.17). DEC time means the time needed if the VFD speeds down from the max. output frequency (F00.17) to 0 Hz . The VFD has four groups of ACC/DEC time, which can be selected by F10 group. The factory default ACC/DEC time of the VFD is the first group. Setting range of $\mathrm{F00.13}$ and F00.14: $0.0-$ 3600.0s	0.0~3600.0	Model depended	\bigcirc	14.
F00.15	Frequency resolution	$\begin{aligned} & 0 \sim 1 \\ & 0: 0.01 \mathrm{HZ} \\ & 1: 0.1 \mathrm{HZ} \end{aligned}$	0~1	0	-	15.
F00.16	Setting frequency action selection in case of power failure	0x000~0x111 Ones: Action selection at power-off during frequency adjusting through digitals. 0 : Save the setting at power-off. 1: Clear the setting at power-off. Tens: Action selection at power-off during frequency adjusting through Modbus communication 0 : Save the setting at power-off. 1: Clear the setting at power-off. Hundreds: Action selection at power-off during frequency adjusting through other communication methods 0 : Save the setting at power-off. 1: Clear the setting at power-off..	$\begin{aligned} & 0 \times 000 \sim 0 \times 1 \\ & 11 \end{aligned}$	0x000	\bigcirc	16.
F00.17	Acceleration and deceleration time reference frequency	0: Max. output frequency 1: Setting frequency $\text { 2: } 100 \mathrm{~Hz}$ Note: only valid for linear acceleration and deceleration	0~2	0	\bigcirc	17.

Function code	Name	Description	Setting range	Default	Modify	SN
F00.18	Communication mode of running commands	0: Modbus 1: Profibus/CANopen 2: Reserved 3: Profinet 4: Reserved 5: Reserved Note: 1, 2, 3, 4 and 5 are extended functions, which can only be used after inserting the extension card	$0 \sim 5$	0	\circ	18.
F00.19	SVC mode selction	0: Mode 0 1: Mode 1	$0 \sim 1$	$0 \sim$	\circ	19.

Function code	Name	Description	Setting range	Default	Modify	SN
F01 group-Parameters of motor 1						
F01.00	Type of motor 1	0: Asynchronous motor (AM) 1: Synchronous motor (SM)	0~1	0	\bigcirc	20.
F01.01	Rated power of AM 1	0.1-3000.0kW	0.1~3000.0	Model depended	\bigcirc	21.
F01.02	Rated voltage of AM 1	0-1200V	0~1200	Model depended	\bigcirc	22.
F01.03	Rated current of AM 1	0.8-6000.0A	0.8~6000.0	Model depended	\bigcirc	23.
F01.04	Rated frequency of AM 1	$0.01 \mathrm{~Hz}-\mathrm{F00.03}$ (Max. output frequency)	$\begin{aligned} & 0.01 ~ \mathrm{~F} 00.0 \\ & 7 \end{aligned}$	50.00 Hz	\bigcirc	24.
F01.05	Rated speed of AM 1	1-60000rpm	1~60000	Model depended	\bigcirc	25.
F01.06	Stator resistance of AM 1	0.001-65.535	$\begin{aligned} & 0.001 ~ 65.5 \\ & 35 \end{aligned}$	Model depended	\bigcirc	26.
F01.07	Rotor resistance of AM 1	0.001-65.535	$\begin{aligned} & 0.001 ~ 65.5 \\ & 35 \end{aligned}$	Model depended	\bigcirc	27.
F01.08	Leakage inductance of AM 1	$0.1-6553.5 \mathrm{mH}$	0.1~6553.5	Model depended	\bigcirc	28.
F01.09	Mutual inductance of AM 1	$0.1-6553.5 \mathrm{mH}$	0.1~6553.5	Model depended	-	29.
F01.10	No-load current of	0.1-6553.5A	0.1~6553.5	Model	\bigcirc	30.

Function code	Name	Description	Setting range	Default	Modify	SN
	AM 1			depended		
F01.11	Magnetic saturation coefficient 1 of iron core of AM 1	0.0-100.0\%	0.0~100.0	80.0\%	\bigcirc	31.
F01.12	Magnetic saturation coefficient 2 of iron core of AM 1	0.0-100.0\%	0.0~100.0	68.0\%	\bigcirc	32.
F01.13	Magnetic saturation coefficient 3 of iron core of AM 1	0.0-100.0\%	0.0~100.0	57.0\%	\bigcirc	33.
F01.14	Magnetic saturation coefficient 4 of iron core of AM 1	0.0-100.0\%	0.0~100.0	40.0\%	\bigcirc	34.
F01.15	Rated power of SM 1	0.1-3000.0kW	0.1~3000.0	Model depended	\bigcirc	35.
F01.16	Rated voltage of SM 1	0-1200V	1~1200	Model depended	\bigcirc	36.
F01.17	Rated current of SM 1	0.8-6000.0A	0.8~6000.0	Model depended	\bigcirc	37.
F01.18	Rated frequency of SM 1	$0.01 \mathrm{~Hz}-\mathrm{F00.07}$ (Max. output frequency)	$\begin{aligned} & 0.00 \sim F 00.0 \\ & 7 \end{aligned}$	50.00 Hz	\bigcirc	38.
F01.19	Number of pole pairs of SM 1	1-128	1~128	2	\bigcirc	39.
F01.20	Stator resistance of SM	0.001-65.535	$\begin{aligned} & 0.001 ~ 65.5 \\ & 35 \end{aligned}$	Model depended	\bigcirc	40.
F01.21	Direct-axis inductance of SM	0.01-655.35mH	$\begin{aligned} & 0.01 ~ 655.3 \\ & 5 \end{aligned}$	Model depended	\bigcirc	41.
F01.22	Quadrature-axis inductance of SM	0.01-655.35mH	$\begin{aligned} & 0.01 ~ 655.3 \\ & 5 \end{aligned}$	Model depended	-	42.
F01.23	Counter-emf of SM	0-10000 0909	0~10000	300	\bigcirc	43.
F01.24	Reserved	0~65535	0~65535	0	-	44.
F01.25	Identification current of synchronous motor	0\%-50\% (of the motor rated current)	0~50	10\%	\bullet	45.
F01.26	Motor parameter	0: Displayed by motor type	0~1	0	\bigcirc	46.

Function code	Name	Description	Setting range	Default	Modify	SN
	display selection	1: Display all				
F01.27	Inertia of motor system	0~30.000kgm2	0~30.000	0.000	-	47.
F01.28	Motor parameter autotuning	0: No operation 1: Rotation autotuning Comprehensive motor parameter autotune It is recommended to use rotation autotuning when high control accuracy is needed. 2: Static autotuning 1 It is suitable in the cases when the motor cannot de-couple from the load. 3: Static autotuning 2 It is suitable in the cases when the motor cannot de-couple form the load. But only for parts of parameters.	0~3	0	\bigcirc	48.
F01.29	Reserved	0-65535	0~65535	0	\bigcirc	49.
F01.30	Reserved	0-65535	0~65535	0	\bigcirc	50.

Function code	Name	Description	Setting range	Default	Modify	SN
F02 group-Encoder of motor 1	$0 \sim 65535$	0	\bullet	51.		
F02.00	Encoder type display	0: Incremental encoder 1: Resolver-type encoder 2: Sin/Cos encoder 3: Endat absolute encoder	Number of pulses generated when the encoder revolves for one circle. Setting range: 0-60000	$0 \sim 60000$	1024	0
F02.01	Encoder pulse number	Encoder direction				
Ones place: AB direction 0: Forward 1: Reverse Tens place: Z pulse direction (reserved) 0: Forward 1: Reverse Hundreds: CD/UVW pole signal direction	$0 \sim 0 \times 111$	0×000	0	53.		

Function parameter list

Function code	Name	Description	Setting range	Default	Modify	SN
		0: Forward 1: Reverse				
F02.03	Detection time of encoder offline fault	Detection time of encoder offline fault. Setting range: $0.0-10.0 \mathrm{~s}$	0.0~10.0	2.0s	\bigcirc	54.
F02.04	Detection time of encoder reversal fault	Detection time of encoder reversal fault. Setting range: 0.0-100.0s	0.0~100.0	0.8s	\bigcirc	55.
F02.05	Filter times of encoder detection	Setting range: $0 \times 00-0 \times 99$ Ones place: Low-speed filter time, corresponds to $2^{\wedge}(0-9) \times 125 \mu \mathrm{~s}$. Tens place: High-speed filter times, corresponds to ${ }^{\wedge}(0-9) \times 125 \mu \mathrm{~s}$.	0~0x99	0x33	\bigcirc	56.
F02.06	Speed ratio between encoder mounting shaft and motor	You need to set the function code when the encoder is not installed on the motor shaft and the drive ratio is not 1 . Setting range: 0.001-65.535	0~65.535	1.000	-	57.
F02.07	Control parameters of SM	Bit0: Enable Z pulse calibration Bit1: Enable encoder angle calibration Bit2: Enable SVC speed measurement Bit3: Reserved Bit4: Reserved Bit5: Reserved Bit6: Enable CD signal calibration Bit7: Reserved Bit8: Do not detect encoder fault during autotuning Bit9: Enable Z pulse detection optimization Bit10: Enable initial Z pulse calibration optimization Bit12: Clear Z pulse arrival signal after stop	$\begin{aligned} & 0 \times 0000 \sim 0 x \\ & \text { FFFF } \end{aligned}$	0x0003	\bigcirc	58.
F02.08	Enabling Z pulse offline detection	$0 \times 00-0 \times 11$ Ones place: Z pulse 0: Do not detect 1: Enable Tens place: UVW pulse (for SM) 0: Do not detect 1: Enable	0x00~0x11	0x10	-	59.

Function code	Name	Description	Setting range	Default	Modify	SN
F02.09	Initial angle of Z pulse	Relative electric angle of encoder Z pulse and motor pole position. Setting range: 0.00-359.99	0~359.99	0.00	-	60.
F02.10	Initial angle of the pole	Relative electric angle of encoder position and motor pole position. Setting range: 0.00-359.99	0~359.99	0.00	-	61.
F02.11	Autotuning of initial angle of pole	0-3 1: Rotary autotuning (DC brake) 2: Static autotuning (suitable for resolver-type encoder, sin/cos with CD signal feedback) 3: Rotary autotuning (initial angle identification)	0~3	0	\bigcirc	62.
F02.12	Speed measurement optimization selection	0: No optimization 1: Optimization mode 1 2: Optimization mode 2	0~2	1	\bigcirc	63.
F02.13	CD signal zero offset gain	0-65535	0~65535	0	\bigcirc	64.
F02.14	Encoder type selection	Ones place: Incremental encoder 0 : without UVW 1: with UVW Tens place: Sin/Cos encoder 0 : without CD signal 1: with CD signal	0x00~0x11	0x00	\bigcirc	65.
F02.15	Speed measurement mode	0: PG card 1: local; realized by HI1 and HI2; supports incremental 24 V encoder only	0~1	0	\bigcirc	66.
F02.16	Frequency division coefficient	$0-255$ When the function code is set to 0 or 1 , frequency division of $1: 1$ is implemented.	0~255	0	-	67.
F02.17	Pulse filter handling selection	0x0000-0xffff Bit0: Enable/disable encoder input filter 0: No filter 1: Filter Bit1: Encoder signal filter mode 0: Self-adaptive filter 1: Use F02.18 filter parameter	$\begin{aligned} & 0 \times 0000 \sim 0 x \\ & \text { FFFF } \end{aligned}$	0x0033	-	68.

Function code	Name	Description	Setting range	Default	Modify	SN
		Bit2: Enable/disable encoder frequency-division output filter 0 : No filter 1: Filter Bit3: Reserved Bit4: Enable/disable pulse reference filter 0 : No filter 1: Filter Bit5: Pulse reference filter mode (valid when Bit4 is set to 1) 0: Self-adaptive filter 1: Use F02.19 filter parameter Bit6: Frequency-divided output source setting 0: Encoder signals 1: Pulse reference signals Bits7-15: Reserved				
F02.18	Encoder pulse filter width	0-63 The filtering time is ${\mathrm{F} 02.18^{*} 0.25 \mu \mathrm{~s} \text {. The value }}^{2}$ 0 or 1 indicates $0.25 \mu \mathrm{~s}$.	0~63	2	\bigcirc	69.
F02.19	Pulse reference filter width	$0-63$ The filtering time is $\mathrm{F02.19*} 0.25 \mu \mathrm{~s}$. The value 0 or 1 indicates $0.25 \mu \mathrm{~s}$.	0~63	2	\bigcirc	70.
F02.20	Pulse number of pulse reference	0-65535	0~65535	1024	\bigcirc	71.
F02.21	Enable angle compensation of SM 1	0-1	0~1	0	-	72.
F02.22	Switchover frequency threshold of speed measurement mode	$0-630.00 \mathrm{~Hz}$ Note: Valid only when F02.12=0	0~630.00	1.00 Hz	\bigcirc	73.
F02.23	SM 1 angle compensation coefficient	-200.0-200.0\%	$\begin{aligned} & -200.0 \sim 200 \\ & .0 \end{aligned}$	100.0	-	74.
F02.24	SM 1 pole pairs of initial angle auto tune	0~128	0~128	2	\bigcirc	75.

Function code	Name	Description	Setting range	Default	Modify	SN
F03 group-Vector control of motor 1						
F03.00	Speed-loop proportional gain 1	The parameters F03.00-F03.05 are applicable only to vector control mode. Below the switching frequency 1 (F03.02), the speed-loop PI parameters are: $\underline{\text { F03.00 }}$ and F03.01. Above the switching frequency 2 (F03.05), the speed-loop PI parameters are: F03.03 and F03.04. PI parameters are obtained according to the linear change of two groups of parameters. Refer to the following figure: The speed loop dynamic response characteristics of vector control can be adjusted by setting the proportional coefficient and integral time of speed regulator. Increasing proportional gain or reducing integral time can accelerate dynamic response of speed loop; however, if the proportional gain is too large or integral time is too small, system oscillation and overshoot may occur; if proportional gain is too small, stable oscillation or speed offset may occur. PI parameters have a close relationship with the inertia of the system. Adjust PI parameters depending on different loads to meet various demands. Setting range of F03.00: 0.0-200.0 Setting range of F03.01: 0.000-10.000s Setting range of F03.02: $0.00 \mathrm{~Hz}-\mathrm{F} 03.05$	0~200.0	20.0	\bigcirc	76.
F03.01	Speed-loop integral time 1		$\begin{aligned} & 0.000 \sim 10.0 \\ & 00 \end{aligned}$	0.200s	\bigcirc	77.
F03.02	Low-point frequency for switching		$\begin{aligned} & 0.00 \sim \mathrm{~F} 03.0 \\ & 5 \end{aligned}$	5.00 Hz	\bigcirc	78.
F03.03	Speed-loop proportional gain 2		0~200.0	20.0	\bigcirc	79.
F03.04	Speed-loop integral time 2		$\begin{aligned} & 0.000 \sim 10.0 \\ & 00 \end{aligned}$	0.200s	\bigcirc	80.
F03.05	High-point frequency for switching		$\begin{aligned} & \text { F03.02~F0 } \\ & 0.07 \end{aligned}$	10.00 Hz	\bigcirc	81.

Function code	Name	Description	Setting range	Default	Modify	SN
		Setting range of F03.03: 0.0-200.0 Setting range of $\mathrm{F03.04}: 0.000-10.000 \mathrm{~s}$ $\begin{aligned} & \text { Setting range of F03.05: F03.02-F00.03 } \\ & \text { (Max. output frequency) }\end{aligned}$				
F03.06	Electromotive slip compensation coefficient of vector control	Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of	50~200	100\%	\bigcirc	82.
F03.05	Power-generation slip compensation coefficient of vector control	the system. Adjusting the parameter properly can control the speed steady-state error. Setting range: 50-200\%	50~200	100\%	-	83.
F03.08	Speed-loop output filter	$0-8$ (corresponding to $0-2^{\wedge} 8 / 10 \mathrm{~ms}$)	0~8	0	\bigcirc	84.
F03.09	Setting source of electromotive torque upper limit	0: Keypad (F03.10) 1: Al1 (100\% corresponding to three times the motor rated current) 2: Al2 (same as the above) 3: Reserved 4: Pulse frequency HI1 (same as the above) 5: Modbus communication (same as the above) 6: Profibus/CANopen communication (same as the above) 7: Reserved 8: Pulse frequency HI2 (same as the above) 9: Profinet communication 10: Reserved 11: Reserved	0~11	0	-	85.
F03.10	Electromotive torque upper limit set through keypad	The function codes are used to set torque limits. Setting range: $0.0-300.0 \%$ (of the motor rated current)	0.0~300.0	180.0\%	-	86.
F03.11	Setting source of braking torque upper limit	0: Keypad (F03.10) 1: Al1 (100\% corresponding to three times the motor rated current) 2: Al2 (same as the above)	0~11	0	-	87.

Function code	Name	Description	Setting range	Default	Modify	SN
		3: Reserved 4: Pulse frequency HI1 (same as the above) 5: Modbus communication (same as the above) 6: Profibus/CANopen communication (same as the above) 7: Reserved 8: Pulse frequency HI2 (same as the above) 9: Profinet communication 10: Reserved 11: Reserved				
F03.12	Braking torque upper limit set through keypad	The function codes are used to set torque limits. Setting range: $0.0-300.0 \%$ (of the motor rated current)	0.0~300.0	180.0\%	-	88.
F03.13	Current-loop proportional coefficient P	Note: - The two function codes impact the dynamic response speed and control	0~65535	1000	-	89.
F03.14	Current-loop integral coefficient I	accuracy of the system. Generally, you do not need to modify the two function codes. Applicable to SVC mode 0 (F00.19=0), SVC mode 1(F00.19=1), and closed-loop vector control mode (F00.01=1). Setting range: 0-65535	0~65535	1000	-	90.
F03.15	PM flux-weakening control selection	$\begin{array}{\|l\|l\|} \hline 0: \text { Disable } \\ \text { 1: Enable } \\ \hline \end{array}$	0~1	0	\bigcirc	91.
F03.16	Flux-weakening voltage limit(PM and AM SVC 0)	Set the max output voltage(percentage of motor rated voltage), set as per actual. Setting range: 0.0~120.0\%	0.0~120.0	100.0\%	-	92.
F03.17	Flux-weakening proportional coefficient P	0~8000	0~8000	1000	-	93.
F0.18	Flux-weakening integral coefficient I	0~8000	0~8000	1200	\bigcirc	94.
F03.19	Weakening coefficient	Used when the AM is in flux-weakening control.	0.1~2.0	0.3	\bigcirc	95.

Function code	Name	Description	Setting range	Default	Modify	SN
F03.20	Lowest weakening point (AM SVC 1)		10~100	20\%	\bigcirc	96.
F03.21	Speed display selection in vector control	0 : Display the actual value 1: Display the set value	0~1	0	-	97.
F03.22	Static friction compensation coefficient	0.0-100.0\%	0.0~100.0	0.0\%	\bigcirc	98.
F03.23	Corresponding frequency point of static friction	0.50-F03.25	$\begin{aligned} & 0.50 ~ \\ & \text { F03.25 } \end{aligned}$	1.00 Hz	\bigcirc	99.
F03.24	High speed friction compensation coefficient	0.0-100.0\%	0.0~100.0	0.0\%	\bigcirc	100.
F03.25	Corresponding frequency of high speed friction torque	F03.23-F00.07(Max frequency)	$\begin{aligned} & \text { F03.23~Ma } \\ & \text { x } \\ & \text { frequency(} \\ & \text { F00.07) } \end{aligned}$	50.00 Hz	\bigcirc	101.
F03.26	Enabling inertia compensation	$\begin{array}{\|l} \text { 0: Disable } \\ \text { 1: Enable } \\ \hline \end{array}$	0~1	0	\bigcirc	102.

Function code	Name	Description	Setting range	Default	Modify	SN
F03.27	Upper limit of inertia compensation torque	The max. inertia compensation torque is limited to prevent inertia compensation torque from being too large. Setting range: 0.0-150.0\% (of the motor rated torque)	0~150.0\%	10.0\%	-	103.
F03.28	Inertia compensation filter times	Filter times of inertia compensation torque, used to smooth inertia compensation torque. Setting range: 0-10	0~10	7	-	104.
F03.29	Inertia identification torque value	Due to friction force, it is required to set certain identification torque for the inertia identification to be performed properly. Setting range: 0.0-100.0\% (of the motor rated torque)	0~100.0\%	10.0\%	-	105.
F03.30	Enabling inertia identification	0 : No operation 1: Enable	0~1	0	\bigcirc	106.
F03.31	Control optimization setting	$0-0 \times 1111$ Ones place: Torque command selection 0 : Torque reference 1: Torque current reference Tens place: Reserved 0: Reserved 1: Reserved Hundreds place: indicates whether to enable speed-loop integral separation 0: Disable 1: Enable Thousands place: Reserved 0 : Reserved 1: Reserved Range: $0 \times 0000-0 \times 1111$	$\begin{aligned} & 0 \times 0000 \sim 0 x \\ & 1111 \end{aligned}$	0x0000	-	107.
F03.32	Speed-loop differential gain	0.00-10.00s	0.00~10.00	0.00s	\bigcirc	108.
F03.33	High-frequency current-loop proportional coefficient	In the closed-loop vector control mode (F00.01=1), when the frequency is lower than the current-loop high-frequency switching threshold (F03.35), the current-loop PI	0~65535	1000	\bigcirc	109.
F03.34	High-frequency	parameters are F03.13 and F03.14; and	0~65535	1000	\bigcirc	110.

Function code	Name	Description	Setting range	Default	Modify	SN
	current-loop integral coefficient	when the frequency is higher than the current-loop high-frequency switching				
F03.35	Current-loop high-frequency switching threshold	threshold (F03.35), the current-loop PI parameters are F03.33 and F03.34. Setting range of F03.33: 0-65535 Setting range of F03.34: 0-65535 Setting range of $\mathrm{F03.35}$: $0.0-100.0 \%$ (of the maximum frequency)	0~100.0\%	100.0\%	-	111.
F03.36	SM injection current drop rate	Setting range: $0.0 \%-100.0 \%$ (of the motor rated current)	$\begin{aligned} & 0.0 \% \sim 100 . \\ & 0 \% \end{aligned}$	80.0\%	\bigcirc	112.
F03.37	Injection current 1	Setting range: $0.0 \%-100.0 \%$ (of the motor rated current)	$\begin{aligned} & -100.0 \% \sim 1 \\ & 00.0 \% \end{aligned}$	20.0\%	\bigcirc	113.
F03.38	Injection current 2	Setting range: $0.0 \%-100.0 \%$ (of the motor rated current)	$\begin{aligned} & -100.0 \% \sim 1 \\ & 00.0 \% \end{aligned}$	10.0\%	\bigcirc	114.
F03.39	Injection current switchover frequency	0.00Hz-F00.03 (Max. output frequency)	$\begin{aligned} & 0.00 \mathrm{~Hz} \sim \mathrm{FO} \\ & 0.07 \end{aligned}$	10.00 Hz	\bigcirc	115.
F03.40	Sto detection time	Setting range: 0.0-10.0s	0.0~10.0	0.5s	\bigcirc	116.
F03.41	High-frequency compensation coefficient of SM	Setting range: 0.0-100.0\%	0~100.0\%	0.0	-	117.
F03.42	Current loop proportion coefficient obtained by auto tune	F03.42 will update after motor auto tune. This value can be set to F03.13 manually for PM VC control. Setting range: 0~65535 Note: if not perform the motor auto tune, it is 0	0~65535	0	-	118.
F03.43	Current loop integral coefficient obtained by auto tune	F03.43 will update after motor auto tune. This value can be set to F03.14 manually for PM VC control. Setting range: 0~65535 Note: if not perform the motor auto tune, it is 0	0~65535	0	\bigcirc	119.

Function code	Name	Description	Setting range	Default	Modify	SN
F04 group-V/F control						
F04.00	V/F curve setting	This group of function code defines the V/F curve to meet the needs of different loads. 0: Straight-line V/F curve, applicable to constant torque loads 1: Multi-point V/F curve 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 1.7) 4: Torque-down V/F curve (power of 2.0) Curves 2-4 are applicable to the torque loads such as fans and water pumps. You can adjust according to the characteristics of the loads to achieve best performance. 5: Customized V/F (V/F separation); in this mode, V can be separated from F and F can be adjusted through the frequency setting channel set by F00.03 or the voltage setting channel set by $\mathrm{F04.15}$ to change the characteristics of the curve. Note: In the following figure, \mathbf{V}_{b} is the motor rated voltage and f_{b} is the motor rated frequency.	0~5	0	\bigcirc	120.
F04.01	Torque boost	In order to compensate for low-frequency	0.0~10.0	0.0\%	\bigcirc	121.
F04.02	Torque boost cut-off	torque characteristics, you can make some boost compensation for the output voltage. F04.01 is relative to the maximum output voltage V_{b}. F04.02 defines the percentage of cut-off frequency of manual torque boost to the rated	0.0~50.0	20.0\%	\bigcirc	122.

Function code	Name	Description	Setting range	Default	Modify	SN
		motor frequency fb_{b}. Torque boost can improve the low-frequency torque characteristics of V/F. You need to select torque boost based on the load. For example, larger load requires larger torque boost, however, if the torque boost is too large, the motor will run at over-excitation, which may cause increased output current and motor overheating, thus decreasing the efficiency. When torque boost is set to 0.0%, the VFD uses automatic torque boost. Torque boost cut-off threshold: Below this frequency threshold, torque boost is valid; exceeding this threshold will invalidate torque boost. Setting range of F04.01: 0.0\%: (automatic); 0.1\%-10.0\% Setting range of F04.02: 0.0\%-50.0\%				
F04.03	V/F frequency point 1	When $\mathrm{F} 04.00=1$ (multi-dot V/F curve), you can set the V/F curve through F04.03-	$\begin{aligned} & 0.00 \sim \text { F04.0 } \\ & 5 \end{aligned}$	0.00Hz	\bigcirc	123.
F04.04	V/F voltage point 1		0.0~110.0	00.0\%	\bigcirc	124.
F04.05	V/F frequency point 2	The V/F curve is generally set according to the load characteristics of the motor.	$\begin{array}{\|l} \text { F04.03~ } \\ \text { F04.07 } \end{array}$	0.00Hz	\bigcirc	125.
F04.06	V/F voltage point 2	high voltage for low frequency will cause	0.0~110.0	0.0\%	\bigcirc	126.
F04.07	V/F frequency point	motor overheat or damage and cause VFD overcurrent stall or overcurrent protection.	$\begin{aligned} & \text { F04.05~ } \\ & \text { F04.09 } \end{aligned}$	0.00Hz	\bigcirc	127.

Function code	Name	Description	Setting range	Default	Modify	SN
	3	putput voltage				
F04.08	V/F voltage point 3		0.0~110.0	00.0\%	\bigcirc	128.
F04.09	V/F frequency point 4		F04.05~Mo tor 1 rated frequency	0.00Hz	\bigcirc	129.
F04.10	V/F voltage point 4	Setting range of F04.03: $0.00 \mathrm{~Hz}-\underline{F 04.05}$ Setting range of $\mathrm{F04.04}$: $0.0 \%-110.0 \%$ (of the rated voltage of motor 1) Setting range of F04.05: F04.03-F04.07 Setting range of F04.06: 0.0\%-110.0\% (of the rated voltage of motor 1) Setting range of F04.07: F04.05-F02.02 (rated frequency of AM 1) or F04.05-F02.16 (rated frequency of SM 1) Setting range of F04.08: 0.0\%-110.0\% (of the motor rated voltage of motor 1)	0.0~110.0	00.0\%	-	130.
F04.11	Low-frequency oscillation control factor 1	In space voltage vector control mode, the motor, especially the large-power motor, may experience current oscillation at certain	0~100	10	\bigcirc	131.
F04.12	High-frequency oscillation control factor 2	running, or even VFD overcurrent. You can adjust the two function codes properly to eliminate such phenomenon.	0~100	10	-	132.
F04.13	Oscillation control threshold	Setting range of : 0-100 Setting range of $\mathrm{F04.12}: 0.00 \mathrm{~Hz}-\underline{\mathrm{FOO}} \mathbf{0 3}$ (Max. output frequency)	$\begin{aligned} & 0.00 \mathrm{~Hz} \sim \mathrm{FO} \\ & 0.07 \end{aligned}$	30.00 Hz	\bigcirc	133.
F04.14	V/F slip compensation gain	The function code is used to compensate for the motor rotating speed change caused by load change in the space voltage vector mode, and thus improve the rigidity of the mechanical characteristics of the motor. You need to calculate the rated slip frequency of the motor as follows: $\triangle \mathrm{f}=\mathrm{fb}-\mathrm{n}^{*} \mathrm{p} / 60$	0.0~200.0	100.0\%	-	134.

Function code	Name	Description	Setting range	Default	Modify	SN
		Of which, f_{b} is the rated frequency of motor 1 , corresponding to function code F01.04. n is the rated rotating speed of motor 1 , corresponding to function code F01.05. p is the number of pole pairs of the motor. 100.0% corresponds to the rated slip frequency $\triangle \mathrm{f}$ of motor 1. Setting range: 0.0-200.0\%				
F04.15	Voltage setting channel of customized V/F	0: Keypad (The output voltage is determined by F04.16) 1: Al1 2: Al2 3: Reserved 4: HI1 5: Multi-step speed running (The setting is determined by group F12.) 6: PID 7: Modbus communication 8: Profibus/CANopen communication 9: Ethernet communication 10: HI2 11: Profinet communication 12: Reserved 13: Reserved	0~13	0	-	135.
F04.16	Voltage set through keypad	Setting range: $0.0 \%-100.0 \%$	0.0~100.0	100.0\%	\bigcirc	136.
F04.17	Voltage increase time	Voltage increase time means the time needed for the VFD to accelerate from min. output	0.0~3600.0	5.0s	\bigcirc	137.
F04.18	Voltage decrease time	voltage to the max. output frequency. Voltage decrease time means the time needed for the VFD to decelerate from the max. output frequency to min. output voltage. Setting range: 0.0-3600.0s	0.0~3600.0	5.0s	-	138.
F04.19	Max. output voltage	ion codes are used to set the upper	$\begin{aligned} & \text { F04.20~10 } \\ & 0.0 \end{aligned}$	100.0\%	\bigcirc	139.
F04.20	Min. output voltage	and lower limits of output voltage.	$\begin{aligned} & \text { 0.0~ } \\ & \text { F04.19 } \end{aligned}$	0.0\%	\bigcirc	140.

Function code	Name	Description	Setting range	Default	Modify	SN
		Setting range of F04.19: F04.20-100.0\% (of the motor rated voltage) Setting range of F04.20: 0.0\%-F04.19				
F04.21	Energy-saving run	0: Disable 1: Automatic energy-saving run In light-load state, the motor can adjust the output voltage automatically to achieve energy saving.	0~1	0	\bigcirc	141.
F04.22	Weakening coefficient in constant power zone	1.00-1.30	1.00~1.30	1.00	\bigcirc	142.
F04.23	Enabling IF mode for AM 1	$\begin{array}{\|l\|} \hline \text { 0: Disable } \\ \text { 1: Enable } \\ \hline \end{array}$	0~1	0	\bigcirc	143.
F04.24	Current setting in IF mode for AM 1	When IF control is adopted for AM 1, the function code is used to set the output current. The value is a percentage in relative to the rated current of the motor. Setting range: 0.0-200.0\%	$\begin{aligned} & 0.0 \sim 200.0 \\ & \% \end{aligned}$	120.0\%	\bigcirc	144.
F04.25	Proportional coefficient in IF mode for AM 1	When IF control is adopted for AM 1, the function code is used to set the proportional coefficient of the output current closed-loop control. Setting range: 0-5000	0~5000	350	\bigcirc	145.
F04.26	Integral coefficient in IF mode for AM 1	When IF control is adopted for AM 1, the function code is used to set the integral coefficient of the output current closed-loop control. Setting range: 0-5000	0~5000	150	\bigcirc	146.
F04.27	Frequency threshold for	0.00-F04.28	$\begin{aligned} & \text { 0.00~F04.2 } \\ & 8 \end{aligned}$	10.00 Hz	\bigcirc	147.

Function code	Name	Description	Setting range	Default	Modify	SN
	switching off IF mode for AM 1					
F04.28	End frequency point for switching off IF mode for AM 1	F04.27-F00.07	F04.27~Ma x frequency (F00.07)	25.00 Hz	\bigcirc	148.
F04.29	Injection current 1 in SM V/F control	When the SM V/F control mode is enabled, the function code is used to set the reactive current of the motor when the output frequency is lower than the frequency specified by F04.31. Setting range: - $100.0 \%-100.0 \%$ (of the motor rated current)	$\begin{aligned} & -100.0 \% \sim 1 \\ & 00.0 \% \end{aligned}$	20.0\%	\bigcirc	149.
F04.30	Injection current 2 in SM V/F control	When the SM V/F control mode is enabled, the function code is used to set the reactive current of the motor when the output frequency is higher than the frequency specified by F04.31 Setting range: - $100.0 \%-100.0 \%$ (of the motor rated current)	$\begin{aligned} & -100.0 \% \sim 1 \\ & 00.0 \% \end{aligned}$	10.0\%	-	150.
F04.31	Frequency threshold for Injection current switching in SM V/F control	When the SM V/F control mode is enabled, the function code is used to set the frequency threshold for the switching between pull-in current 1 and pull-in current 2. Setting range: $0.00 \mathrm{~Hz}-\mathrm{F00.07}$ (Max. output frequency)	$\begin{aligned} & 0.00 \mathrm{~Hz} \sim \mathrm{FO} \\ & 0.07 \end{aligned}$	50.00 Hz	-	151.
F04.32	Reactive current closed-loop proportional coefficient in SM V/F control	When the SM V/F control mode is enabled, the function code is used to set the proportional coefficient of reactive current closed-loop control. Setting range: 0-3000	0~3000	50	-	152.
F04.33	Reactive current closed-loop integral time in SM V/F control	When the SM V/F control mode is enabled, the function code is used to set the integral coefficient of reactive current closed-loop control. Setting range: 0-3000	0~3000	30	\bigcirc	153.
F04.34	Reactive current closed-loop output	When the SM V/F control mode is enabled, the function code is used to set the output	0~16000	8000	\bigcirc	154.

| Function
 code | Name | Description | Setting
 range | Default | Modify |
| :---: | :---: | :--- | :--- | :--- | :--- | SN | limit in SM V/F
 control | limit of the reactive current closed-loop
 control. A greater value indicates a higher
 reactive closed-loop compensation voltage | |
| :---: | :--- | :--- |
| and higher output power of the motor. In
 general, you do not need to modify the
 function code.
 Setting range: 0-16000 | | |

Function code	Name	Description	Setting range	Default	Modify	SN

F05 group-Torque control

F05.00	Enabling torque control	0: Disable 1: Enable	0~1	0	\bigcirc	155.
F05.01	Torque setting method	0-1: Keypad (F05.02) 2: Al1 (100% corresponding to three times the motor rated current) 3: Al2 (same as the above) 4: Reserved 5: Pulse frequency HI1 (same as the above) 6: Multi-step torque (same as the above) 7: Modbus communication (same as the above) 8: Profibus/CANopen communication (same as the above) 9: Reserved 10: Pulse frequency $\mathrm{HI} 2($ same as the above) 11: Profinet communication 12: Reserved	0~12	0	\bigcirc	156.
F05.02	Torque set through keypad	-300.0\%-300.0\% (of the motor rated current)	$\begin{aligned} & -300.0 \sim 300 \\ & .0 \end{aligned}$	20.0\%	\bigcirc	157.
F05.03	Torque reference filter time	0.000-10.000s	$\begin{aligned} & 0.000 \sim 10.0 \\ & 00 \mathrm{~s} \end{aligned}$	0.010s	\bigcirc	158.
F05.04	Setting source of forward rotation upper-limit frequency in torque	0: Keypad (F05.05) 1: Al1 (100\% corresponding to the max. frequency) 2: AI2 (same as the above)	0~12	0	\bigcirc	159.

Function code	Name	Description	Setting range	Default	Modify	SN
	control	3: Reserved 4: Pulse frequency HIA1 (same as the above) 5: Multi-step setting (same as the above) 6: Modbus communication(same as the above) 7: Profibus/CANopen communication (same as the above) 8: Reserved 9: Pulse frequency HI2 (same as the above) 10: Profinet communication 11: Reserved 12: Reserved				
F05.05	Forward rotation upper-limit frequency set through keypad in torque control	Setting range: $0.00 \mathrm{~Hz}-\mathrm{P} 00.07$ (Max. output frequency) The function codes are used to set the frequency upper limits.	$\underset{7}{0.00 \sim F 00.0}$	50.00 Hz	\bigcirc	160.
F05.06	Setting source of reverse rotation upper-limit frequency in torque control	0: Keypad (F05.05) 1: Al1 (100\% corresponding to the max. frequency) 2: Al2 (same as the above) 3: Reserved 4: Pulse frequency HIA1(same as the above) 5: Multi-step setting (same as the above) 6: Modbus communication(same as the above) 7: Profibus/CANopen communication (same as the above) 8: Reserved 9: Pulse frequency HI2 (same as the above) 10: Profinet communication 11: Reserved	0~12	0	-	161.
F05.07	Reverse rotation upper-limit frequency set through keypad in torque control	Setting range: $0.00 \mathrm{~Hz}-\underline{P 00.07}$ (Max. output frequency) The function codes are used to set the frequency upper limits.	$\underset{7}{0.00 \sim \mathrm{~F} 00.0}$	50.00 Hz	-	162.

Function parameter list

Function code	Name	Description	Setting range	Default	Modify	SN
F05.08	Upper limit frequency bias value in torque control	$0.00 \mathrm{~Hz}-\mathrm{P00.07}$ (Max. output frequency) Note: Valid only for torque control.	$0.00 \sim$ F00.07	0.00 Hz	\circ	163.
F05.09	Upper limit frequency ACC/DEC selection in torque control	0: No limit on acceleration or deceleration 1: ACC/DEC time 1 2: ACC/DEC time 2 3: ACC/DEC time 3 4: ACC/DEC time 4	$0 \sim 4$	0	\circ	164.

Function code	Name	Description	Setting range	Default	Modify	SN
F06 group-Start and stop control						
F06.00	Start mode	0: Direct start 1: Start after DC braking 2: Speed tracking restart 1	0~2	0	\bigcirc	165.
F06.01	Starting frequency of direct start	The function code indicates the initial frequency during VFD start. Refer to F06.02 (Starting frequency hold time) for detailed information. Setting range: $0.00-50.00 \mathrm{~Hz}$	0.00~50.00	0.50 Hz	\bigcirc	166.
F06.02	Starting frequency hold time	 Setting a proper starting frequency can increase the torque during VFD start. During the hold time of the starting frequency, the output frequency of the VFD is the starting frequency. And then, the VFD runs from the starting frequency to the set frequency. If the set frequency is lower than the starting frequency, the VFD stops running and keeps in the standby state. The starting frequency is	0.0~50.0	0.0s	\bigcirc	167.

Function code	Name	Description	Setting range	Default	Modify	SN
		not limited in the lower limit frequency. Setting range: $0.0-50.0 \mathrm{~s}$				
F06.03	Braking current before start	The VFD performs DC braking with the braking current before start and it speeds up	0.0~100.0	0.0\%	\bigcirc	168.
F06.04	Braking time before start	braking time is $0, D C$ braking is invalid. Stronger braking current indicates larger braking power. The DC braking current before start is a percentage of the VFD rated current. Setting range of F06.03: 0.0-100.0\% Setting range of F06.04: 0.00-50.00s	0.00~50.00	0.00s	\bigcirc	169.
F06.05	Pre excitation time	0.000~10.000s	$\begin{aligned} & 0.000 ~ 10.0 \\ & 00 \mathrm{~s} \end{aligned}$	0.300s	\bigcirc	170.
F06.06	ACC and DEC mode	The function code indicates the changing mode of the frequency during start and running. 0: Linear type. The output frequency increases or decreases linearly. 1: S curve. The output frequency increases or decreases according to the S curve. The S curve is generally applied to elevators, conveyors, and other application scenarios where smoother start or stop is required. Note: If mode 1 is selected, set F06.07,	0~1	0	\bigcirc	171.

Function code	Name	Description	Setting range	Default	Modify	SN
		F06.08, F06.09, and F06.10 accordingly.				
F06.07	Time of starting segment of ACC S curve	The curvature of S curve is determined by the ACC range and ACC/DEC time. Setting range: 0.0-50.0s	0.0~50.0s	0.1 s	\bigcirc	172.
F06.08	Time of ending segment of ACC S curve		0.0~50.0s	0.1 s	\bigcirc	173.
F06.09	Time of starting segment of DEC S curve		0.0~50.0s	0.1s	\bigcirc	174.
F06.10	Time of ending segment of DEC S curve		0.0~50.0s	0.1 s	\bigcirc	175.
F06.11	Stop mode	0: Decelerate to stop. After a stop command takes effect, the VFD lowers output frequency based on the DEC mode and the defined DEC time; after the frequency drops to the stop speed (F06.20), the VFD stops. 1: Coast to stop. After a stop command takes effect, the VFD stops output immediately; and the load coasts to stop according to mechanical inertia.	0~1	0	-	176.
F06.12	Starting frequency of DC braking for stop	Starting frequency of DC braking for stop: During the deceleration to stop, the VFD starts DC braking for stop when running	$\begin{aligned} & 0.00 \sim \mathrm{~F} 00.0 \\ & 7 \end{aligned}$	0.00Hz	-	177.
F06.13	DC braking current for stop	determined by F06.09. Wait time before DC braking: The VFD blocks	0.0~100.0	0.0\%	\bigcirc	178.
F06.14	DC braking time for stop	the output before starting DC braking. After this wait time, DC braking is started so as to	0.0~50.00	0.00s	\bigcirc	179.
F06.15	Demagnetization time	prevent overcurrent caused by DC braking at high speed. DC braking current for stop: The value of F06.11 is the percentage of rated current of VFD. Stronger current indicates greater DC braking effect.	0.00~30.00	0.00s	\bigcirc	180.

Function code	Name	Description	Setting range	Default	Modify	SN
		DC braking time for stop: It indicates the hold time of $D C$ braking. If the time is $0, D C$ braking is invalid, and the VFD decelerates to stop within the specified time. Setting range of $\underline{\text { F06.12: }} \mathbf{0 . 0 0 H z - F 0 0 . 0 7}$ (Max. output frequency) Setting range of F06.15: 0.00-30.00s Setting range of F06.13: 0.0-100.0\% Setting range of F06.14: 0.0-50.0s				
F06.16	Short-circuit braking current	When the VFD starts in direct start mode (F06.00=0), set P06.17 to a non-zero value to	0.0~150.0	0.0\%	\bigcirc	181.
P06.17	Hold time of short-circuit braking for start	enter short-circuit braking. During stop, if the running frequency of VFD is lower than the starting frequency F06.12 of	0.0~50.00	0.00s	-	182.
F06.18	Hold time of short-circuit braking for stop	brake for stop, set P06.18 to a non-zero value to enter short-circuit braking for stop, and then carry out DC braking in the time set by F06.14. (Refer to the descriptions for F06.12- F06.14.) Setting range of P06.16: 0.0-100.0\% (VFD) Setting range of P06.17: 0.0-50.00s Setting range of P06.18: 0.0-50.00s	0.0~50.00	0.00s	-	183.
F06.19	Magnetic flux braking	The function code is used to enable magnetic flux braking. 0: Invalid 100-150: A greater coefficient indicates greater braking strength. The VFD can quickly slow down the motor by increasing the magnetic flux. The energy generated by the motor during braking can be transformed into heat energy by increasing the magnetic flux. The VFD monitors the state of the motor	0~150	0	-	184.

Function code	Name	Description	Setting range	Default	Modify	SN
		continuously even during the magnetic flux period. Magnetic flux braking can be used for motor stop, as well as for motor rotation speed change. The other advantages include: Braking is performed immediately after the stop command is given. The braking can be started without waiting for magnetic flux weakening. The cooling is better. The current of the stator other than the rotor increases during magnetic flux braking, while the cooling of the stator is more effective than the rotor.				
F06.20	Stop speed	0.00-100.00Hz	$\begin{aligned} & 0.00 \sim \mathrm{~F} 00.0 \\ & 7 \end{aligned}$	0.50 Hz	\bigcirc	185.
F06.21	Stop speed detection mode	0 : Detect by the set speed (unique in space voltage vector control mode) 1: Detect by the feedback speed	0~1	0	\bigcirc	186.
F06.22	Stop speed detection time	0.00-100.00s	$\begin{aligned} & 0.00 \sim 100.0 \\ & 0 \mathrm{~s} \end{aligned}$	0.50s	\bigcirc	187.
F06.23	Pre-exciting time of jog	0-10.000s	$\begin{aligned} & 0.000 \sim 10.0 \\ & 00 \mathrm{~s} \end{aligned}$	0.000s	-	188.
F06.24	Starting frequency of braking for jogging to stop	0-F00.03	$\begin{aligned} & \text { 0.00~F00.0 } \\ & 7 \end{aligned}$	0.00Hz	-	189.
F06.25	Delay to enter sleep	0-3600.0s	$\begin{aligned} & 0.0 \sim 3600.0 \\ & s \end{aligned}$	0.0s	\bigcirc	190.

Function code	Name	Description	Setting range	Default	Modify	SN

F07 group-Control optimization

F07.00	PWM selection	$0 \times 0000-0 \times 1121$ Ones place: PWM mode selection $0:$ PWM mode 1, 3PH modulation and 2PH modulation	$0 \times 0000 \sim 0 \mathrm{x}$ 1121	0×1101	\bigcirc	191.

Function code	Name	Description	Setting range	Default	Modify	SN
		1: PWM mode 2, 3PH modulation Tens place: PWM low-speed carrier limit 0 : Low-speed carrier limit mode 1 1: Low-speed carrier limit mode 2 2: No limit Hundreds place: Deadzone compensation method 0: Compensation method 1 1: Compensation method 2 Thousands place: PWM loading mode selection 0 : Interruptive loading 1: Normal loading				
F07.01	Overmodulation selection	$0 \times 00-0 \times 1111$ Ones: 0: Disable overmodulation 1: Enable overmodulation Tens: 0: Mild overmodulation 1: Deepened overmodulation	$\begin{aligned} & 0 \times 0000 \sim 0 x \\ & 1111 \end{aligned}$	0x01	\bigcirc	192.
F07.02	Open-loop 0Hz output selection	0 : Output without voltage 1: Output with voltage 2: Output with the DC braking current for stop	0~2	0	-	193.
F07.03	AVR function selection	0 : Invalid 1: Valid during the whole procedure The auto-adjusting function of the VFD can eliminate the impact on the output voltage of the VFD because of the bus voltage fluctuation.	0~1	1	-	194.
F07.04	Frequency decrease ratio in drop control	The output frequency of the VFD changes as the load changes. The function code is mainly used to balance the power when several motors drive a same load. Setting range: $0.00-50.00 \mathrm{~Hz}$	0.00~50.00	0.00Hz	-	195.
F07.05	Frequency threshold of the start of droop control	0.00-50.00Hz	0.00~50.00	2.00 Hz	-	196.

Function code	Name	Description	Setting range	Default	Modify	SN
F07.06	Initial pole detection method	0: Invalid 1: Pulse detection method 2: Pulse detection method	0~2	0	\bigcirc	197.
F07.07	Initial position high frequency injection	$200 \mathrm{~Hz}-1000 \mathrm{~Hz}$	200~1000	500 Hz	\bigcirc	198.
F07.08	High-frequency superposition voltage	0.0~300.0\% (motor rated voltage)	$\begin{aligned} & 0.0 \sim 300.0 \\ & \% \end{aligned}$	100.0\%	\bigcirc	199.
F07.09	Reserved			0.0	\bigcirc	200.
F07.10	Control optimization parameter 1	0~0xFFFF	0~0xFFFF	0	\bigcirc	201.
F07.11	PLL switch frequency	SVC mode, back EMF PLL(phase lock loop) works at this frequency point. If running frequency is less then this point, PLL disabled, otherwise, PLL enabled. Setting range: $0.00 \sim 655.35 \mathrm{~Hz}$	0~655.35	2.00 Hz	\bigcirc	202.
F07.12	Angle compensation	0.0~359.9 ${ }^{\circ}$	0.0~359.9	0.0°	\bigcirc	203.
F07.13	Initial pole detection injection current	0.0~300.0\% (motor rated voltage)	0.0~300.0	20.0	\bigcirc	204.
F07.14	Undervoltage stall voltage regulator proportional gain P	Set the proportional gain of bus voltage regulator during undervoltage stall Setting range: $0 \sim 1000$	0~1000	100	-	205.
F07.15	Undervoltage stall voltage regulator integral coefficient I	Set the integral coefficient of bus voltage regulator during undervoltage stall Setting range: $0 \sim 1000$	0~1000	40	-	206.
F07.16	Undervoltage stall current regulator proportional gain P	Set the proportional gain of active current regulator during undervoltage stall Setting range: $0 \sim 1000$	0~1000	25	-	207.
F07.17	Undervoltage stall current regulator integral coefficient I	Set the integral coefficient of active current regulator during undervoltage stall Setting range: $0 \sim 2000$	0~2000	150	-	208.

Function code	Name	Description	Setting range	Default	Modify	SN
F07.18	Overvoltage stall voltage regulator proportional gain P	Set the proportional gain of bus voltage regulator during overvoltage stall Setting range: $0 \sim 1000$	0~1000	60	\bigcirc	209.
F07.19	Overvoltage stall voltage regulator integral coefficient I	Set the integral coefficient of bus voltage regulator during overvoltage stall Setting range: $0 \sim 1000$	0~1000	10	\bigcirc	210.
F07.20	Overvoltage stall current regulator proportional gain P	Set the proportional gain of active current regulator during overvoltage stall Setting range: $0 \sim 1000$	0~1000	60	\bigcirc	211.
F07. 21	Overvoltage stall current regulator integral coefficient I	Set the integral coefficient of active current regulator during overvoltage stall Setting range: $0 \sim 2000$	0~2000	250	-	212.
F07.22	Current limit selection	During accelerated running, as the load is too large, the actual acceleration rate of motor is lower than that of output frequency, if no measures are taken, the VFD may trip due to overcurrent during acceleration. $0 \times 00-0 \times 11$ Ones place: Current limit action selection 0 : Invalid 1: Always valid Tens place: Hardware current limit overload alarm selection 0 : Valid 1: Invalid	0x00~0x21	01	\bigcirc	213.
F07.23	Automatic current limit level	Current limit protection function detects output current during running, and compares it with the current-limit level defined by F07.23, if it exceeds the current-limit level, the	50.0~200.0	G type: 160.0\% P type: 120.0\%	\bigcirc	214.
F07.24	Frequency drop rate during current limit	VFD will run at stable frequency during accelerated running, or run in decreased frequency during constant-speed running; if it exceeds the current-limit level continuously, the VFD output frequency will drop	0~50.00	$10.00 \mathrm{~Hz} / \mathrm{s}$	\bigcirc	215.

Function code	Name	Description	Setting range	Default	Modify	SN
		continuously until reaching lower limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. Setting range of F07.23: 50.0-200.0\% Setting range of $\mathrm{F07.24:} 0.00-50.00 \mathrm{~Hz} / \mathrm{s}$				
F07.25	Automatic current limiting regulation proportional gain P	0~65535	0~65535	0	\bigcirc	216.
F07.26	Automatic current limiting regulation integral coefficient I	0~65535	0~65535	0		217.
F07.27	Output power correction factor for Motor 1	0.00~3.00	0.00~3.00	1.00	-	218.
F07.28	Output power correction factor for Motor 2	0.00~3.00	0.00~3.00	1.00	\bigcirc	219.
F07.29	Over voltage threshold	0.0V~2500.0V	0.0~2500.0	Model depended	\bigcirc	220.
F07.30	Under voltage threshold	0.0V~2000.0V	0.0~2000.0	Model depended	\bigcirc	221.
F07.31	Over current threshold	10.0\%~250.0\%	10.0~250.0	220.0\%	\bigcirc	222.
F07.32	Voltage correction factor	10.0\%~250.0\%	10.0~250.0	100.0\%	\bigcirc	223.
F07.33	Current correction	10.0\%~250.0\%	10.0~250.0	100.0\%	\bigcirc	224.

Function code	Name	Description	Setting range	Default	Modify	SN
	factor					
F07.34	Auto tuen dead zone time compensation mode	0~1	0~1	0	\bigcirc	225.
F07.35	Dead zone time compensation correction coefficient	0~300\%	0~300	70\%	\bigcirc	226.
F07.36	AM SVC1 low frequency no-load current amplification factor	80~300\%	80~300	100\%	\bigcirc	227.
F07.37	Vector control output torque calculation mode	0~1 0 : Calculate torque according to torque current 1: Calculate torque according to power	0~1	0	-	228.
F07.38	VFControl flag	$0 \times 00 \sim 0 \times 11$ Ones: processing of oscillation suppression coefficient 0 : The oscillation suppression coefficient of synchronous motor is related to carrier frequency 1: The oscillation suppression coefficient of asynchronous motor is related to carrier frequency and given frequency Tens: external reactive current oscillation suppression 0 : External reactive current oscillation suppression is not 0 1: The external reactive current oscillation suppression is 0	0x00~0x11	00	\bigcirc	229.

Function code	Name	Description	Setting range	Default	Modify	SN
F07.39	Keypad control setting	0x0000~0x1223 LED ones: frequency enable selection 0: Both \wedge / \vee keys and analog potentiometer adjustments are valid 1: Only \wedge / \vee keys adjustment is valid 2: Only analog potentiometer adjustments is valid 3: Neither \wedge / \vee keys nor digital potentiometer adjustments are valid LED tens: frequency control selection 0 : Only valid when $\mathrm{P} 00.03=0$ or $\mathrm{P} 00.04=0$ 1: Valid for all frequency setting manner 2: Invalid for multi-step speed when multi-step speed has the priority LED hundreds: action selection during stopping 0 : Setting is valid 1: Valid during running, cleared after stopping 2: Valid during running, cleared after receiving the stop command LED thousands: \wedge / \vee keys and analog potentiometer integral function 0 : The Integral function is valid 1: The Integral function is invalid	$\begin{aligned} & 0 \times 0000 \sim 0 x \\ & 1223 \end{aligned}$	0003	-	230.
F07.40	Integral ratio of the keypad potentiometer	0.01~10.00s	0.01~10.00	0.10s	\bigcirc	231.
F07.41	Reserved	0-65535	0~65535	0	-	232.
F07.42	Reserved	0-65535	0~65535	0	\bullet	233.

Function code	Name	Description	Setting range	Default	Modify	SN
F08 group-Input terminals						
F08.00	Function of DI1 terminal	0: No function 1: Forward running	$0 \sim 79$	1	0	234.
F08.01	Function of DI2	2: Reverse running	$0 \sim 79$	4	0	235.

Function code	Name	Description	Setting range	Default	Modify	SN
	terminal	3: 3-wire control/Sin 4: Forward jogging 5: Reverse jogging 6: Coast to stop 7: Fault reset 8: Running pause 9: External fault input 10: Frequency increase (UP) 11: Frequency decrease (DOWN) 12: Clear frequency increase/decrease setting 13: Switch-over between setup main and setup auxiliary 14: Switch-over between combination setting and main setting 15: Switch-over between combination setting and setup auxiliary 16: Multi-step speed terminal 1 17: Multi-step speed terminal 2 18: Multi-step speed terminal 3 19: Multi-step speed terminal 4 20: Multi-step speed pause 21: ACC/DEC time selection 1 22: ACC/DEC time selection 2 23: Simple PLC stop reset 24: Simple PLC pause 25: PID control pause 26: Wobbling frequency pause 27: Wobbling frequency reset 28: Counter reset 29: Switching between speed control and torque control 30: ACC/DEC disabled 31: Counter trigger 32: Reserved 33: Clear frequency increase/decrease setting temporarily 34: DC brake				
F08.02	Function of DI3 terminal		0~79	7	O	236.
F08.03	Function of DI4 terminal		0~79	0	O	237.
F08.04	Function of HI1 terminal		0~79	0	O	238.
F08.05	Reserved					239.

Function code	Name	Description	Setting range	Default	Modify	SN
		35: Switching between motor 1 and motor 2 36: Command switches to keypad 37: Command switches to terminal 38: Command switches to communication 39: Pre-exciting command 40: Zero out power consumption quantity 41: Maintain power consumption quantity 42: Source of upper torque limit switches to keypad 43: Position reference point input (valid only for DI~DI3 are valid) 44: Spindle orientation disabled 45: Spindle zeroing/local positioning zeroing 46: Spindle zero position selection 1 47: Spindle zero position selection 2 48: Spindle scale division selection 1 49: Spindle scale division selection 2 50: Spindle scale division selection 3 51: Terminal for switching between position control and speed control 52: Pulse input disabled 53: Clear position deviation cleared 54: Switch over position proportional gain 55: Enable cyclic positioning of digital position positioning 56: Emergency stop 57: Motor over-temperature fault input 59: Switch to V/F control 60: Switch to FVC control 61: PID polarity switch-over 66: Zero out encoder counting 67: Pulse increase 68: Enable pulse superimposition 69: Pulse decrease 70: Electronic gear selection 71-79: Reserved				
F08.06	HDI input type	0x00-0x11	$0 \times 00 \sim 0 \times 11$	0	\bigcirc	240.

Function code	Name	Description	Setting range	Default	Modify	SN
		Ones place: HI1 input type 0 : High-speed pulse input 1: Digital input Tens place: HI2 input type 0: High-speed pulse input 1: Digital input				
F08.07	Digital input filter time	The function code is used to set the filter time for DI1-DI4, HI1, and HI2. In strong interference cases, increase the value to avoid maloperation. $0.000-1.000 \mathrm{~s}$	$\begin{aligned} & 0.000 ~ 1.00 \\ & 0 \end{aligned}$	0.010s	\bigcirc	241.
F08.08	Terminal control mode	The function code is used to set the mode of terminal control. 0 : Two-wire control 1, the enabling consistent with the direction. This mode is widely used. The defined FWD/REV terminal command determines the motor rotation direction. 1: Two-wire control 2 , the enabling separated from the direction. In this mode, FWD is the enabling terminal. The direction depends on the defined REV state.	0~3	0	\bigcirc	242.

Function code	Name	Description	Setting range	Default	Modify	SN
		2: Three-wire control 1. This mode defines Sin as the enabling terminal, and the running command is generated by FWD, while the direction is controlled by REV. During running, the Sin terminal needs to be closed, and terminal FWD generates a rising edge signal, then the VFD starts to run in the direction set by the state of terminal REV; the VFD needs to be stopped by disconnecting terminal Sin. The direction control is as follows during running: Sin: Three-wire control; FWD: Forward running; REV: Reverse running 3: Three-wire control 2. This mode defines Sin as the enabling terminal, and the running command is generated by FWD or REV, but the direction is controlled by both FWD and REV. During running, the Sin terminal needs to be closed, and terminal FWD or REV				

Function code	Name	Description	Setting range	Default	Modify	SN
		generates a rising edge signal to control the running and direction of the VFD; the VFD needs to be stopped by disconnecting terminal Sin. Sin: Three-wire control; FWD: Forward running; REV: Reverse running Note: For two-wire controlled running mode, when the FWD/REV terminal is valid, if the VFD stops due to a stop command given by another source, the VFD does not run again after the stop command disappears even if the control terminal FWD/REV is still valid. To make the VFD run, you need to trigger				

Function code	Name	Description	Setting range	Default	Modify	SN
		FWD/REV again, for example, PLC single-cycle stop, fixed-length stop, and valid STOP/RST stop during terminal control.				
F08.09	UP/DOWN terminal control setting	0x000-0x221 Ones place: Frequency setting selection 0 : The setting made through UP/DOWN is valid. 1: The setting made through UP/DOWN is invalid. Ones place: Frequency control selection 0 : Valid only when $\mathrm{P00.03}=0$ or $\mathrm{P00.04}=0$ 1: Valid for all frequency setting methods 2: Invalid for multi-step speed running when multi-step speed running has the priority Hundreds place: Action selection for stop 0 : Setting is valid. 1: Valid during running, cleared after stop 2: Valid during running, cleared after a stop command is received	$\begin{aligned} & 0 \times 000 \sim 0 \times 2 \\ & 21 \end{aligned}$	0x000	\bigcirc	243.
F08.10	Frequency increment integral rate of the UP terminal	0.01-50.00Hz/s	0.01~50.00	$0.50 \mathrm{~Hz} / \mathrm{s}$	\bigcirc	244.
F08.11	Frequency integral rate of the DOWN terminal	0.01-50.00Hz/s	0.01~50.00	$0.50 \mathrm{~Hz} / \mathrm{s}$	\bigcirc	245.
F08.12	Virtual terminal setting	0x000-0x3F (0: disable, 1: enable) BITO: DI1 virtual terminal BIT1: DI2 virtual terminal BIT2: DI3 virtual terminal BIT3: DI4 virtual terminal BIT4: HI1 virtual terminal BIT5: HI2 virtual terminal	$\begin{aligned} & \text { 0x000~0x3 } \\ & F \end{aligned}$	0×00	\bigcirc	246.
F08.13	Reserved	0-65535	0~65535	0	-	247.
F08.14	DI1 switch-on delay	The function codes specify the delay time	$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	248.

Function code	Name	Description	Setting range	Default	Modify	SN
F08.15	DI1 switch-off delay	corresponding to the electrical level changes when the programmable input terminals switch on or switch off. Setting range: 0.000-50.000s Note: After a virtual terminal is enabled, the state of the terminal can be changed only in communication mode. The communication address is $0 \times 200 \mathrm{~A}$.	$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \\ & \hline \end{aligned}$	0.000s	\bigcirc	249.
F08.16	DI2 switch-on delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	250.
F08.17	DI2 switch-off delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \\ & \hline \end{aligned}$	0.000s	\bigcirc	251.
F08.18	DI3 switch-on delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	252.
F08.19	DI3 switch-off delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	253.
F08.20	DI4 switch-on delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	254.
F08.21	DI4 switch-off delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \\ & \hline \end{aligned}$	0.000s	-	255.
F08.22	HI1 switch-on delay		$\begin{aligned} & \hline 0.000 \sim 50.0 \\ & 00 \\ & \hline \end{aligned}$	0.000s	\bigcirc	256.
F08.23	HI1 switch-off delay		$\begin{aligned} & \hline 0.000 \sim 50.0 \\ & 00 \\ & \hline \end{aligned}$	0.000s	-	257.
F08.24	Reserved				\bigcirc	258.
F08.25	Reserved				\bigcirc	259.
F08.26	Input terminal polarity	The function code is used to set the polarity of input terminals. When a bit is 0 , the input terminal is positive; when a bit is 1 , the input terminal is negative. 0x000-0x3F	$\begin{aligned} & 0 \times 000 \sim 0 \times 3 \\ & F \end{aligned}$	0x000	-	260.
F08.27	Al1 lower limit	The function codes define the relationship between the analog input voltage and its corresponding setting. When the analog input voltage exceeds the range from the upper limit to the lower limit, the upper limit or lower limit is used.	$\begin{aligned} & 0.00 \sim \mathrm{~F} 08.2 \\ & 9 \\ & \hline \end{aligned}$	0.00 V	\bigcirc	261.
F08.28	Corresponding setting of Al1 lower limit		$\begin{aligned} & -300.0 \sim 300 \\ & .0 \end{aligned}$	0.0\%	-	262.
F08.29	Al1 upper limit		$\begin{aligned} & \text { F08.27~10. } \\ & 00 \end{aligned}$	10.00V	\bigcirc	263.
F08.30	Corresponding setting of Al1 upper limit	When the analog input is current input, 0 mA 20 mA current corresponds to $0 \mathrm{~V}-10 \mathrm{~V}$ voltage.	$\begin{aligned} & -300.0 ~ 300 \\ & .0 \end{aligned}$	100.0\%	-	264.
F08.31	Al1 input filter time	setting corresponds to different nominal values. Refer to the descriptions of each	$\begin{aligned} & 0.000 \sim 10.0 \\ & 00 \end{aligned}$	0.030s	\bigcirc	265.
F08.32	AI2 lower limit	application section for details.	$\begin{aligned} & -10.00 \sim \text { F08 } \\ & .34 \end{aligned}$	-10.00V	-	266.

Function code	Name	Description	Setting range	Default	Modify	SN
F08.33	Corresponding setting of AI2 lower limit	The following figure illustrates the cases of several settings:	$\begin{aligned} & -300.0 ~ 300 \\ & .0 \end{aligned}$	-100.0\%	\bigcirc	267.
F08.34	Al2 middle value 1		$\begin{aligned} & \text { F08.32~F0 } \\ & 8.36 \end{aligned}$	0.00 V	\bigcirc	268.
F08.35	Corresponding setting of Al2 middle value 1		$\begin{aligned} & -300.0 \sim 300 \\ & .0 \end{aligned}$	0.0\%	\bigcirc	269.
F08.36	Al2 middle value 2	Input filter time: to adjust the sensitivity of	$\begin{aligned} & \text { F08.34~F0 } \\ & 8.38 \end{aligned}$	0.00V	\bigcirc	270.
F08.37	Corresponding setting of AI2 middle value 2	analog input. Increasing the value properly can enhance analog input anti-interference but may reduce the sensitivity of analog input.	$\begin{aligned} & -300.0 \sim 300 \\ & .0 \end{aligned}$	0.0\%	-	271.
F08.38	Al2 upper limit	When Al1 selects the $0-20 \mathrm{~mA}$ input, the corresponding voltage of 20 mA is 10 V . Al2	$\begin{aligned} & \text { F08.36~10. } \\ & 00 \end{aligned}$	10.00V	-	272.
F08.39	Corresponding setting of AI2 upper limit	supports the $-10-+10 \mathrm{~V}$ input. Setting range of $\mathrm{F08.27}$: 0.00V-F08.29 Setting range of F08.28: $-300.0 \%-300.0 \%$	$\begin{aligned} & -300.0 \sim 300 \\ & .0 \end{aligned}$	100.0\%	\bigcirc	273.
F08.40	Al2 input filter time	Setting range of F08.30: -300.0\%-300.0\% Setting range of $\mathrm{F08.31}: 0.000 \mathrm{~s}-10.000 \mathrm{~s}$ Setting range of F08.32: -10.00V-F08.34 Setting range of F 08.33 : $-300.0 \%-300.0 \%$ Setting range of F08.34: F08.32-F08.36 Setting range of F 08.35 : $-300.0 \%-300.0 \%$ Setting range of F08.36: F08.34-F08.38 Setting range of $\mathrm{F08.37}$: $-300.0 \%-300.0 \%$ Setting range of F08.38: F08.36-10.00V Setting range of F08.39: -300.0\%-300.0\% Setting range of F08.40: 0.000s-10.000s	$\begin{aligned} & 0.000 \sim 10.0 \\ & 00 \end{aligned}$	0.030s	\bigcirc	274.
F08.41	HDI high-speed pulse input function selection	0 : Input set through frequency 1: Reserved 2: Input set through encoder, used together with HI2	0~2	0	\bigcirc	275.
F08.42	HDI lower limit	0.000 kHz - $\underline{\text { F08.44 }}$	0.000 KHz	0.000 KHz	\bigcirc	276.

Function code	Name	Description	Setting range	Default	Modify	SN
	frequency		~F08.44			
F08.43	Corresponding setting of HI1 lower limit frequency	-300.0\%-300.0\%	$\begin{aligned} & -300.0 ~ 300 \\ & .0 \end{aligned}$	0.0\%	\bigcirc	277.
F08.44	HI1 upper limit frequency	F08.42-50.000kHz	$\begin{aligned} & \text { F08.42~50. } \\ & 000 \mathrm{KHz} \end{aligned}$	50.000 KHz	\bigcirc	278.
F08.45	Corresponding setting of HDI upper limit frequency	-300.0\%-300.0\%	$\begin{aligned} & -300.0 \sim 300 \\ & .0 \end{aligned}$	100.0\%	-	279.
F08.46	HDI frequency input filter time	0.000s-10.000s	$\begin{aligned} & 0.000 \sim 10.0 \\ & 00 \end{aligned}$	0.030s	\bigcirc	280.
F08.47	Reserved				\bigcirc	281.
F08.48	Reserved				\bigcirc	282.
F08.49	Reserved				\bigcirc	283.
F08.50	Reserved				\bigcirc	284.
F08.51	Reserved				\bigcirc	285.
F08.52	Reserved				\bigcirc	286.
F08.53	Al1 input signal type	0 : Voltage 1: Current Note: You can set the Al1 input signal type through the corresponding function code.	0~1	0	\bigcirc	287.

| Function
 code | Name | Description | Setting
 range | Default | Modify |
| :---: | :---: | :---: | :---: | :---: | :---: | SN

F09 group-Output terminals

F09.00	HDO output type	0: Open collector high-speed pulse output. The max. frequency of pulse is 50.00 kHz . For details about the related functions, Refer to F09.08-F09.11. 1: Open collector output. For details about the related functions, Refer to F09.02.	0~1	0	O	288.
F09.01	DO output	0: Invalid	0~63	0	\bigcirc	289.

Function code	Name	Description	Setting range	Default	Modify	SN
		36: Speed/position control switchover completed 37-63: Reserved				
F09.05	AO1 output	0 : Running frequency (0-Max. output frequency) 1: Set frequency (0-Max. output frequency) 2: Ramp reference frequency ($0-$ Max. output frequency) 3: Rotational speed (0-Speed corresponding to max. output frequency) 4: Output current ($0-$ Twice the VFD rated current) 5: Output current (0-Twice the motor rated current) 6: Output voltage ($0-1.5$ times the VFD rated voltage) 7: Output power (0 -Twice the motor rated power) 8: Set torque ($0-$ Twice the motor rated current) 9: Output torque (Absolute value, 0-+/- Twice the motor rated torque) 10: Al1 input ($0-10 \mathrm{~V} / 0-20 \mathrm{~mA}$) 11: AI2 input (0-10V) 12: Resvered 13: HI1 input($0.00-50.00 \mathrm{kHz}$) 14: Value 1 set through Modbus (0-1000) 15: Value 2 set through Modbus (0-1000) 16: Value 1 set through PROFIBUS/CANopen (0-1000) 17: Value 2 set through PROFIBUS/CANopen (0-1000) 18: Resvered 19: Resvered 20: HI2 input ($0.00-50.00 \mathrm{kHz}$) 21: Value 1 set through Profinet (0-1000) 22: Torque current (bipolar, 0-Triple the motor rated current)	0~47	0	\bigcirc	293.
F09.06	AO2 output		0~47	0	\bigcirc	294.
F09.07	HDO high-speed pulse output		0~47	0	\bigcirc	295.

Function code	Name	Description	Setting range	Default	Modify	SN
		23: Exciting current (bipolar, 0-Triple the motor rated current) 24: Set frequency (bipolar, 0-Max. output frequency) 25: Ramp reference frequency (bipolar, 0Max. output frequency) 26: Rotational speed (bipolar, 0-Speed corresponding to max. output frequency) 27: Value 2 set through Profinet (0-1000) 28~29: Reserved 30: Rotational speed ($0-$ Twice the motor rated synchronous speed) 31~47: Reserved				
F09.08	HDO output lower limit	-300.0\%-F09.10	$\begin{aligned} & -300.0 \sim \text { F09 } \\ & .10 \end{aligned}$	0.0\%	\bigcirc	296.
F09.09	HDO output corresponding to lower limit	0.00-50.00kHz	0.00~50.00	0.00kHz	\bigcirc	297.
F09.10	HDO output upper limit	F09.08-300.0\%	$\begin{aligned} & \text { F09.08~10 } \\ & 0.0 \end{aligned}$	100.0\%	\bigcirc	298.
F09.11	HDO output corresponding to upper limit	0.00-50.00kHz	0.00~50.00	50.00kHz	\bigcirc	299.
F09.12	HDO output filter time	0.000s-10.000s	$\begin{aligned} & 0.000 \sim 10.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	300.
F09.13	AO1 output lower limit		$\begin{aligned} & -300.0 \sim \text { F09 } \\ & .15 \end{aligned}$	0.0\%	\bigcirc	301.
F09.14	AO1 output corresponding to lower limit	$\begin{aligned} & \text { Setting range of F09.13: }-300.0 \%-\underline{F 09.15} \\ & \text { Setting range of F09.14: } 0.00 \mathrm{~V}-10.00 \mathrm{~V} \end{aligned}$	0.00~10.00	0.00 V	\bigcirc	302.
F09.15	AO1 output upper limit	Setting range of $\mathrm{F09.16:} 0.00 \mathrm{~V}-10.00 \mathrm{~V}$ Setting range of F09.17: 0.000s-10.000s	$\begin{aligned} & \text { F09.13~30 } \\ & 0.0 \end{aligned}$	100.0\%	\bigcirc	303.
F09.16	AO1 output corresponding to upper limit		0.00~10.00	10.00V	\bigcirc	304.

Function code	Name	Description	Setting range	Default	Modify	SN
F09.17	AO1 output filter time		$\begin{aligned} & 0.000 \sim 10.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	305.
F09.18	AO2 output lower limit		$\begin{aligned} & -300.0 \sim \text { F09 } \\ & .20 \end{aligned}$	0.0\%	\bigcirc	306.
F09.19	AO2 output corresponding to lower limit		0.00~10.00	0.00 V	\bigcirc	307.
F09.20	AO2 output upper limit		$\begin{aligned} & \text { F09.18~30 } \\ & 0.0 \end{aligned}$	100.0\%	\bigcirc	308.
F09.21	AO2 output corresponding to upper limit		0.00~10.00	10.00 V	\bigcirc	309.
F09.22	AO2 output filter time		$\begin{aligned} & 0.000 \sim 10.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	310.
F09.23	DO switch-on delay	The function codes specify the delay time corresponding to the electrical level changes when the programmable output terminals switch on or switch off. Setting range: 0.000-50.000s Note: F09.08 and F09.09 are valid only whenF09.00=1.	$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	311.
F09.24	DO switch-off delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	312.
F09.25	HDO switch-on delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	313.
F09.26	HDO switch-off delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	314.
F09.27	T1 switch-on delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	315.
F09.28	T1 switch-off delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	316.
F09.29	Reserved				\bigcirc	317.
F09.30	Reserved				\bigcirc	318.
F09.31	Output terminal polarity selection	The function code is used to set the polarity of output terminals. When a bit is 0 , the input terminal is positive;	0x00~0x0F	00	\bigcirc	319.

Function code	Name	Description				Setting range	Default	Modify	SN
		When a bit is 1 , the input terminal is negative.							
		BIT3	BIT2	BIT1	BIT0				
		T2	T1	HO	DO				
		Setting range: $0 \times 0-0 \times F$							
F09.32	Reserved	0-65535				0~1	0	\bigcirc	320.
F09.33	Frequency reach detection value	0-F00.07				0~F00.07	1.00	-	321.
F09.34	Frequency reach detection time	0-3600.0s				0~3600.0s	0.5s	\bigcirc	322.

Function code	Name	Description	Setting range	Default	Modify	SN
F10 group-Auxiliary functions						
F10.00	Running frequency of jog	The function code is used to define the reference frequency during jogging. Setting range: $0.00 \mathrm{~Hz}-\mathrm{F00.07}$ (Max. output frequency)	$\begin{aligned} & 0.00 \sim \mathrm{~F} 00.0 \\ & 7 \end{aligned}$	5.00 Hz	-	323.
F10.01	ACC time for jog	ACC time for jogging means the time needed for the VFD to accelerate from OHz to the	0.0~3600.0	Model depended	\bigcirc	324.
F10.02	DEC time for jog	DEC time for jogging means the time needed for the VFD to decelerate from the max. output frequency (F00.07) to 0 Hz . Setting range: $0.0-3600.0 \mathrm{~s}$	0.0~3600.0	Model depended	\bigcirc	325.
F10.03	ACC time 2		0.0~3600.0	Model depended	-	326.
F10.04	DEC time 2	For details, Refer to $\mathrm{F00.13}$ and $\mathrm{F00.14}$. The VFD has four groups of ACC/DEC time,	0.0~3600.0	Model depended	\bigcirc	327.
F10.05	ACC time 3	which can be selected by F08. The factory default ACC/DEC time of the VFD is the first	0.0~3600.0	Model depended	\bigcirc	328.
F10.06	DEC time 3	group. Setting range: 0.0-3600.0s	0.0~3600.0	Model depended	\bigcirc	329.
F10.07	ACC time 4		0.0~3600.0	Model depended	\bigcirc	330.

Function code	Name	Description	Setting range	Default	Modify	SN
F10.08	DEC time 4		0.0~3600.0	Model depended	\bigcirc	331.
F10.09	Jump frequency 1	When the set frequency is within the range of jump frequency, the VFD runs at the boundary of jump frequency. The VFD can avoid mechanical resonance points by setting jump frequencies. The VFD supports the setting of three jump frequencies. If the jump frequency points are set to 0 , this function is invalid. Setting range: $0.00 \mathrm{~Hz}-\underline{\mathrm{F00.07}}$ (Max. output frequency) $0.0-100.0 \%$ (of the set frequency) 0.0-50.0\% (of the amplitude of wobbling frequency) 0.1-3600.0s 0.1-3600.0s This function code indicates the transition time specified in P01.14 during FWD/REV rotation switching. See the figure.	$\begin{aligned} & 0.00 \sim \\ & \text { F00.07 } \end{aligned}$	0.00 Hz	\bigcirc	332.
F10.10	Jump frequency amplitude 1		$\begin{aligned} & 0.00 \sim \\ & \text { F00.07 } \end{aligned}$	0.00 Hz	\bigcirc	333.
F10.11	Jump frequency 2		$\begin{aligned} & 0.00 \sim \\ & \text { F00.07 } \end{aligned}$	0.00 Hz	\bigcirc	334.
F10.12	Jump frequency amplitude 2		$\begin{aligned} & \text { 0.00~ } \\ & \text { F00.07 } \end{aligned}$	0.00 Hz	\bigcirc	335.
F10.13	Jump frequency 3		$\begin{aligned} & \text { 0.00~ } \\ & \text { F00.07 } \end{aligned}$	0.00 Hz	\bigcirc	336.
F10.14	Jump frequency amplitude 3		$\begin{aligned} & 0.00 \sim \\ & \text { F00.07 } \end{aligned}$	0.00 Hz	\bigcirc	337.
F10.15	Amplitude of wobbling frequency		0.0~100.0	0.0\%	\bigcirc	338.
F10.16	Amplitude of sudden jump frequency		0.0~50.0	0.0\%	\bigcirc	339.
F10.17	Rise time of wobbling frequency		$0.1 \sim 3600.0$	5.0s	\bigcirc	340.
F10.18	Fall time of wobbling frequency		$0.1 \sim 3600.0$	5.0s	\bigcirc	341.
F10.19	FWD/REV running deadzone time		0.0~3600.0	0.0s	-	342.

-168-

Function parameter list

Function code	Name	Description	Setting range	Default	Modify	SN
		Setting range: $0.0-3600.0 \mathrm{~s}$				
F10.20	FWD/REV running switching mode	0 : Switch at zero frequency 1: Switch at the starting frequency 2: Switch after the speed reaches the stop speed with a delay	0~2	1	\bigcirc	343.
F10.21	Setting running time	0~65535min	0~65535	Omin	\bigcirc	344.
F10.22	Terminal-based running command protection at power-on	When the channel of running commands is terminal control, the system detects the state of the running terminal during power-on. 0 : The terminal running command is invalid at power-on. Even the running command is considered as valid during power-on, the VFD does not run and it keeps the protection state until the running command is canceled and enabled again. 1: The terminal running command is valid at power-on. If the running command is considered as valid during power-on, the VFD is started automatically after the initialization. Note: Exercise caution before using this function. Otherwise, serious result may follow.	0~1	0	-	345.
F10.23	FDT1 electrical level detection value	When the output frequency exceeds the corresponding frequency of FDT electrical	$\begin{aligned} & 0.00 \sim \\ & \text { F00.07 } \end{aligned}$	50.00 Hz	\bigcirc	346.
F10.24	FDT1 lagging detection value	level, the multifunction digital output terminal continuously outputs the signal of "Frequency	0.0~100.0	5.0\%	\bigcirc	347.
F10.25	FDT2 electrical level detection value	when the output frequency decreases to a value lower than the frequency corresponding to (FDT electrical level-FDT lagging	$\begin{aligned} & 0.00 \sim \mathrm{~F} 00.0 \\ & 7 \end{aligned}$	50.00 Hz	\bigcirc	348.
F10.26	FDT2 lagging detection value		0.0~100.0	5.0\%	\bigcirc	349.

Function code	Name	Description	Setting range	Default	Modify	SN
F10.27	Detection value for frequency being reached	When the output frequency is within the detection range, the multifunction digital output terminal outputs the signal of "Frequency reached". Setting range: $0.00 \mathrm{~Hz}-\mathrm{F00.03}$ (Max. output frequency)	$0.0 \sim \mathrm{~F} 00.07$	0.00Hz	\bigcirc	350.
F10.28	Switching frequency of ACC/DEC time	0.00-F00.07 (Max. output frequency) 0.00 Hz : No switchover If the running frequency is greater than F10.28, switch to ACC/DEC time 2.	$\begin{aligned} & 0.00 \sim \text { F00. } 0 \\ & 7 \end{aligned}$	0.00 Hz	\bigcirc	351.

Function code	Name	Description	Setting range	Default	Modify	SN
F10.29	Cooling-fan running mode	0 : Normal mode 1: Permanent running after power-on	0~1	0	\bigcirc	352.
F10.30	Action selected when running frequency less than frequency lower limit (valid when frequency lower limit greater than 0)	0 : Run at the frequency lower limit 1: Stop 2: Sleep	0~2	0	\bigcirc	353.
F10.31	Wake-up-from-slee p delay	The function code determines the wake-up-from-sleep delay time. When the running frequency of the VFD is lower than the lower limit, the VFD becomes standby. When the set frequency exceeds the lower limit one again and it lasts for the time set by F10.31, the VFD runs automatically. Running frequence Running frequency curve: Setting range: 0.0-3600.0s (valid when F01.30=2)	0.0~3600.0	0.0s	\bigcirc	354.
F10.32	Power-off restart selection	The function code indicates whether the VFD automatically runs after re-power on. 0: Disable 1: Enable. If the restart condition is met, the	0~1	0	-	355.
F10.33	Wait time for restart after power-off	The function code indicates the wait time before the automatic running of the VFD that is re-powered on.	0.0~3600.0	1.0s	\bigcirc	356.

Function code	Name	Description	Setting range	Default	Modify	SN
		Setting range: 0.0-3600.0s (valid when F12.32=1)				
F10.34	Start delay	After a VFD running command is given, the VFD is in standby state and restarts with the delay defined by F12.24 to implement brake release. Setting range: 0.0-600.0s	0.0~600.0	0.0s	-	357.
F10.35	Stop speed delay	0.0-600.0s	0.0~600.0	0.0s	-	358.
F10.36	DEC time for emergency stop	0.0-60.0s	0.0~60.0	2.0s	\bigcirc	359.
F10.37	Reserved	0-65535	0~65535	0	-	360.
F10.38	Channel for switching between motor 1 and motor 2	0x00-0x14 Ones: Switchover channel 0: Terminal 1: Modbus communication 2: PROFIBUS/CANopen communication 3: Reserved 4: Profinet communication Tens: indicates whether to enable switchover during running 0: Disable 1: Enable	0x00~0x14	0x00	\bigcirc	361.
F10.39	Initial electricity consumption high-order bits	Used to set the initial electricity consumption. Initial electricity consumption $=$ F10.39*1000+ F10.40	0~59999	0°	\bigcirc	362.
F10.40	Initial electricity consumption low-order bits	Setting range of F10.39: 0-59999 kWh (k) Setting range of F10.40: 0.0-999.9 kWh	0~999.9	0.0°	-	363.
F10.41	VFD input power factor	The function code is used to adjust the display value on the AC input side. $0.00-1.00$	0.00~1.00	0.56	\bigcirc	364.

Function code	Name	Description	Setting range	Default	Modify	SN
F10.42	STO lock selection	0: Lock upon STO alarm Lock upon STO alarm indicates resetting is required after state restoration if STO occurs. 1: No lock on STO alarm No lock on STO alarm indicates STO alarm disappears automatically after state restoration if STO occurs.	0~1	0	\bigcirc	365.
F10.43	Number of decimal places of linear speed	0 : No decimal place 1: One 2: Two 3: Three	0~3	0	\bigcirc	366.
F10.44	Set counting value	F10.45-65535	$\begin{aligned} & \text { F10.45~65 } \\ & 535 \end{aligned}$	0	\bigcirc	367.
F10.45	Designated counting value	0-F10.44	0~F10.44	0	\bigcirc	368.
Function code	Name	Description	Setting range	Default	Modify	SN
F11 group-PID control						
F11.00	PID reference source	0: Keypad (F011.01) 1: Al1 2: AI2 3: Reserved 4: High-speed pulse HI1 5: Multi-step running 6: Modbus communication 7: Profibus/CANopen communication 8: Reserved 9: High-speed pulse HDIB 10: Profinet communication 11: Reserved 12: Reserved	0~12	0	-	369.
F11.01	PID reference preset through keypad	The function code is mandatory when F11.00 $=0$. The base value of The function code is the feedback of the system. Setting range: -100.0\%-100.0\%	$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bigcirc	370.
F11.02	PID feedback source	$\begin{aligned} & \text { 0: Al1 } \\ & \text { 1: } \mathrm{Al} 2 \end{aligned}$	0~10	0	\bigcirc	371.

Function code	Name	Description	Setting range	Default	Modify	SN
		2: Reserved 3: HI2 4: Modbus communication 5: PROFIBUS/CANopen communication 6: Reserved 7: HI2 8: Profinet communication 9: Reserved 10: Reserved.				
F11.03	PID output characteristics selection	0: PID output is positive. When the feedback signal is greater than the PID reference value, the output frequency of the VFD will decrease to balance the PID. Example: PID control on strain during unwinding. 1: PID output is negative. When the feedback signal is greater than the PID reference value, the output frequency of the VFD will increase to balance the PID. Example: PID control on strain during unwinding.	0~1	0	\bigcirc	372.
F11.04	Proportional gain (Kp)	The function is applied to the proportional gain P of PID input. P determines the strength of the whole PID adjuster. The value 100 indicates that when the difference between the PID feedback value and given value is 100%, the range within which the PID regulator can regulate the output frequency command is the max. frequency (ignoring integral function and differential function). Setting range: 0.00-100.00	$\begin{aligned} & 0.00 \sim 100.0 \\ & 0 \end{aligned}$	1.80	\bigcirc	373.
F11.05	Integral time (Ti)	It determines the speed of integral regulation made on the deviation between PID feedback and reference by PID regulator. When the deviation between PID feedback and reference is 100%, the regulation of integral regulator (ignoring integral and differential actions), after undergoing continuous regulation during this time period, can reach	0.00~10.00	0.90s	\bigcirc	374.

Function code	Name	Description	Setting range	Default	Modify	SN
		max. output frequency (F00.07) or max. voltage (F04.19). The shorter the integral time, the stronger the regulation intensity. Setting range: $0.00-10.00 \mathrm{~s}$				
F11.06	Differential time (Td)	It determines the intensity of the regulation made on the change rate of deviation between PID feedback and reference by PID regulator. If feedback changes by 100% during this period, the regulation of differential regulator (ignoring integral and differential actions) is max. output frequency (${ }^{(\mathrm{OO} .07}$) or max. voltage (F04.19). The longer the derivative time, the stronger the regulation intensity. Setting range: 0.00 10.00s	0.00~10.00	0.00s	-	375.
F11.07	Sampling cycle (T)	It means the sampling cycle of feedback. The regulator operates once during each sampling cycle. The larger the sampling cycle, the slower the response. Setting range: 0.001-10.000s	$\begin{aligned} & 0.001 ~ 10.0 \\ & 00 \end{aligned}$	0.001s	\bigcirc	376.
F11.08	Limit of PID control deviation	It is the max. allowable deviation of PID system output value relative to closed-loop reference value. Within this limit, PID regulator stops regulation. Set this function code properly to regulate the precision and stability of PID system.	0.0~100.0	0.0\%	-	377.

Function code	Name	Description	Setting range	Default	Modify	SN
		Setting range: 0.0-100.0\%				
F11.09	Upper limit value of PID output	The two function codes are used to set the upper/lower limit value of PID regulator.	$\begin{aligned} & \text { F11.10~10 } \\ & 0.0 \end{aligned}$	100.0\%	\bigcirc	378.
F11.10	Lower limit value of PID output	100.0\% corresponds to Max. output frequency (F00.07) or max. voltage (F04.19). Setting range of F11.09: F11.10-100.0\% Setting range of F11.10: -100.0\%-F11.09	$\begin{aligned} & -100.0 \sim \text { F11 } \\ & .09 \end{aligned}$	0.0\%	-	379.
F11.11	Feedback offline detection value	Set PID feedback offline detection value, when the detection value is no more than the feedback offline detection value, and the	$\begin{aligned} & 0.0 \sim 100.0 \\ & \% \end{aligned}$	0.0\%	\bigcirc	380.
F11.12	Feedback offline detection time	duration exceeds the value set in F11.12, the VFD will report "PID feedback offline fault", and keypad displays PIDE. Setting range of F11.11: 0.0-100.0\% Setting range of F11.12: 0.0-3600.0s	$0.0 \sim 3600.0$	1.0s	\bigcirc	381.
F11.13	PID control selection	0x0000-0x1111 Ones: 0: Continue integral control after the frequency reaches upper/lower limit 1: Stop integral control after the frequency reaches upper/lower limit Tens: 0 : The same with the main reference direction 1: Contrary to the main reference direction Hundreds: 0: Limit based on the max. frequency 1: Limit based on A frequency Thousands: 0: Main+ Auxiliary frequency, acceleration /DEC of main reference frequency source	$\begin{aligned} & 0 \times 0000 ~ 0 x \\ & 1111 \end{aligned}$	0x0001	-	382.

Function code	Name	Description	Setting range	Default	Modify	SN
		buffering is invalid 1: Main+ Auxiliary frequency, acceleration/ DEC of main reference frequency source buffering is valid, acceleration and DEC are determined by F11.07 (acceleration time 4).				
F11.14	Low-frequency proportional gain (Kp)	0.00-100.00 Low-frequency switching point: 5.00 Hz , high-frequency switching point: 10.00 Hz (F11.04 corresponds to high-frequency parameter), and the middle is the linear interpolation between these two points.	$\begin{aligned} & 0.00 \sim 100.0 \\ & 0 \end{aligned}$	1.00	\bigcirc	383.
F11.15	ACC/DEC time of PID command	0.0-1000.0s	$\begin{aligned} & 0.0 \sim 1000.0 \\ & s \end{aligned}$	0.0s	\bigcirc	384.
F11.16	PID output filter time	0.000-10.000s	$\begin{aligned} & \text { 0.000~10.0 } \\ & \text { 00s } \end{aligned}$	0.000s	\bigcirc	385.
F11.17	Reserved	-100.0-100.0\%	$\begin{aligned} & -100.0 \sim 100 \\ & .0 \% \end{aligned}$	0.0\%	-	386.
F11.18	Low-frequency integral time (Ti)	0.00-10.00s	$\begin{aligned} & 0.00 \sim 10.00 \\ & s \end{aligned}$	0.90s	\bigcirc	387.
F11.19	Low-frequency differential time (Td)	0.00-10.00s	$\begin{aligned} & 0.00 \sim 10.00 \\ & s \end{aligned}$	0.00s	\bigcirc	388.
F11.20	Low-frequency point of PID parameter switching	0.00-F11.21	$\begin{aligned} & 0.00 \sim \mathrm{~F} 11.2 \\ & 1 \end{aligned}$	5.00	\bigcirc	389.
F11.21	High-frequency point of PID parameter switching	F11.20-F00.08	$\begin{aligned} & \text { F11.20~F0 } \\ & 0.08 \end{aligned}$	10.00	\bigcirc	390.

| Function
 code | Name | Description | Setting
 range | Default | Modify |
| :---: | :---: | :---: | :---: | :---: | :---: | SN

F12 group-Simple PLC and multi-step speed control

F12.00	Multi-step speed 0	Frequency setting range for steps from step 0 to to step 15: -100.0-100.0\%. $\quad 100.0 \%$	$.0 \sim 100$	0.0%	\circ	391.
F12.01	Multi-step speed 1	corresponds to the max. output frequency	$-100.0 \sim 100$	0.0%	\circ	392.

Function parameter list

Function code	Name	Description	Setting range	Default	Modify	SN
		F00.07.	. 0			
F12.02	Multi-step speed 2	Running time setting range for steps from step 0 to step 15: $0.0-6553.5 \mathrm{~s}(\mathrm{~min})$. The time	$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bigcirc	393.
F12.03	Multi-step speed 3	When simple PLC operation is selected, it is required to set F12.00-F12.33 to determine	$\begin{aligned} & -100.0 \sim 100 \\ & 0 \end{aligned}$	0.0\%	\bigcirc	394.
F12.04	Multi-step speed 4	the running frequency and running time of each step.	$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bigcirc	395.
F12.05	Multi-step speed 5	Note: The symbol of multi-step speed determines the running direction of simple PLC, and the negative value means reverse	$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bigcirc	396.
F12.06	Multi-step speed 6	running. F12.01	$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bigcirc	397.
F12.07	Multi-step speed 7		$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bigcirc	398.
F12.08	Multi-step speed 8		$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bigcirc	399.
F12.09	Multi-step speed 9	When selecting multi-step speed running, the multi-step speed is within the range of -fmaxfmax, and it can be set continuously. The	$\begin{aligned} & -100.0 \sim 100 \\ & 0 \end{aligned}$	0.0\%	\bigcirc	400.
F12.10	Multi-step speed 10	start/stop of multi-step stop running is also determined by F00.02.	$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bigcirc	401.
F12.11	Multi-step speed 11	The VFD supports the setting of speeds of 16 steps, which are set by combined codes of	$-100.0 \sim 100$	0.0\%	\bigcirc	402.
F12.12	Multi-step speed 12	corresponding to function code F08.00F08.03) and correspond to multi-step speed 0	$\begin{aligned} & -100.0 \sim 100 \\ & 0 \end{aligned}$	0.0\%	\bigcirc	403.
F12.13	Multi-step speed 13	to multi-step speed 15.	$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bigcirc	404.
F12.14	Multi-step speed 14		$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bigcirc	405.
F12.15	Multi-step speed 15		$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bigcirc	406.

Function code	Name	Description	Setting range	Default	Modify	SN
		2: Cyclic running; the VFD enters the next cycle after completing one cycle until receiving stop command and stops.				
F12.17	Simple PLC memory selection	0 : No memory after power-off 1: Memory after power-off; PLC memories its running stage and frequency before power-off.	0~1	0	-	408.
F12.18	Running time of step 0		0.0~6553.5	0.0 s (min)	-	409.
F12.19	Running time of step 1		0.0~6553.5	0.0 s (min)	-	410.
F12.20	Running time of step 2		0.0~6553.5	0.0 s (min)	\bigcirc	411.
F12.21	Running time of step 3		0.0~6553.5	0.0 s (min)	\bigcirc	412.
F12.22	Running time of step 4		0.0~6553.5	0.0 s (min)	\bigcirc	413.
F12.23	Running time of step 5		0.0~6553.5	0.0 s (min)	-	414.
F12.24	Running time of step 6		0.0~6553.5	0.0 s (min)	-	415.
F12.25	Running time of step 7	0.0-6553.5s(min)	0.0~6553.5	0.0 s (min)	\bigcirc	416.
F12.26	Running time of step 8		0.0~6553.5	0.0 s (min)	\bigcirc	417.
F12.27	Running time of step 9		0.0~6553.5	0.0 s (min)	\bigcirc	418.
F12.28	Running time of step 10		0.0~6553.5	0.0 s (min)	\bigcirc	419.
F12.29	Running time of step 11		0.0~6553.5	0.0 s (min)	-	420.
F12.30	Running time of step 12		0.0~6553.5	0.0 s (min)	-	421.
F12.31	Running time of step 13		0.0~6553.5	0.0 s (min)	-	422.
F12.32	Running time of step 14		0.0~6553.5	0.0 s (min)	\bigcirc	423.

Function parameter list

Function code	Name	Description	Setting range	Default	Modify	SN
F12.36	PLC restart mode	0: Restart from the first step, namely if the VFD stops during running (caused by stop command, fault or power down), it will run from the first step after restart. 1: Continue running from the step frequency when interruption occurred, namely if the VFD stops during running (caused by stop command or fault), it will record the running time of current step, and enters this step automatically after restart, then continue running at the frequency defined by this step in the remaining time.	0~1	0	\bigcirc	427.
F12.37	Multi-step time unit	0 : second; the running time of each step is counted in seconds; 1: minute; the running time of each step is counted in minutes	0~1	0	\bigcirc	428.

| Function
 code | Name | Description | Setting
 range | Default | Modify |
| :---: | :---: | :---: | :---: | :---: | :---: | SN

F13 group-Protection parameters and fault records

F13.00	Overload protection selection of motor 1	0 : No protection 1: Common motor protection (with low-speed compensation). As the cooling effect of a common motor is degraded at low speed running, the corresponding electronic thermal protection value needs to be adjusted properly, the low compensation indicates lowering the overload protection threshold of the motor whose running frequency is lower than 30 Hz . 2: Variable-frequency motor protection (without low speed compensation). Because the heat dissipation function for a variable-frequency motor is not impacted by the rotation speed, it is not necessary to adjust the protection value at low speed running.	-	2	©	429.

Function code	Name	Description	Setting range	Default	Modify	SN
F13.01	Overload protection coefficient of motor 1	Motor overload multiples $M=$ lout/(In*K) In is rated motor current, lout is VFD output current, and K is motor overload protection coefficient. A smaller value of K indicates a bigger value of M. When $\mathrm{M}=116 \%$, protection is performed after motor overload lasts for 1 hour; when $M=150 \%$, protection is performed after motor overload lasts for 12 minutes; when $\mathrm{M}=180 \%$, protection is performed after motor overload lasts for 5 minutes; when $\mathrm{M}=200 \%$, protection is performed after motor overload lasts for 60 seconds; when $M \geq 400 \%$, protection is performed immediately. Setting range: 20.0% - 150.0\%	20.0~150.0	100.0\%	\bigcirc	430.
F13.02	Overload protection selection of motor 2	0: No protection 1: Common motor protection (with low-speed compensation). As the cooling effect of a common motor is degraded at low speed running, the corresponding electronic thermal protection value needs to be adjusted properly, the low compensation indicates lowering the overload protection threshold of the motor whose running frequency is lower than 30 Hz .	0~2	2	\bigcirc	431.

Function code	Name	Description	Setting range	Default	Modify	SN
		2: Variable-frequency motor protection (without low speed compensation). Because the heat dissipation function for a variable-frequency motor is not impacted by the rotation speed, it is not necessary to adjust the protection value at low speed running.				
F13.03	Overload protection coefficient of motor 2	Motor overload multiples M=lout/(In*K) In is rated motor current, lout is VFD output current, and K is motor overload protection coefficient. A smaller value of K indicates a bigger value of M. When $M=116 \%$, protection is performed after motor overload lasts for 1 hour; when $M=150 \%$, protection is performed after motor overload lasts for 12 minutes; when $\mathrm{M}=180 \%$, protection is performed after motor overload lasts for 5 minutes; when $\mathrm{M}=200 \%$, protection is performed after motor overload lasts for 60 seconds; when $\mathrm{M} \geq 400 \%$, protection is performed immediately. Setting range: 20.0\% - 150.0\%	20.0~150.0	100.0\%	-	432.
F13.04	Overvoltage stall protection	$\begin{array}{\|l} \hline 0: \text { Disable } \\ \text { 1: Enable } \\ \hline \end{array}$	0~1	1	\bigcirc	433.

Function code	Name	Description	Setting range	Default	Modify	SN
F13.05	Overvoltage stall protection voltage	120-150\% (standard bus voltage) (380V)	120~145\%	136\%	\bigcirc	434.
		120-150\% (standard bus voltage) (220V)	120~145\%	120\%		
F13.06	Enabling energy consumption braking	0: Disable 1: Enable	0~1	1	-	435.
F13.07	Energy consumption braking threshold voltage	The function code is used to set the starting bus voltage of energy consumption braking. Adjust this value properly to achieve effective braking for the load. The default value varies depending on the voltage class. Setting range: 200.0-2000.0V	$\begin{aligned} & 200.0 \sim 200 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \text { 220V } \\ & \text { class: } \\ & 380.0 \mathrm{~V} \\ & 380 \mathrm{~V} \\ & \text { class: } \\ & 700.0 \mathrm{~V} \end{aligned}$	\bigcirc	436.
F13.08	Auto fault reset count	Auto fault reset count: When the VFD uses automatic fault reset, it is used to set the	0~10	0	\bigcirc	437.
F13.09	Auto fault reset interval	number of automatic fault reset times. When the number of continuous reset times exceeds the value, the VFD reports a fault and stops. Auto fault reset interval: Time interval from when a fault occurred to when automatic fault reset takes effect. After VFD starts, If no fault occurred within 600s after the VFD starts, the number of automatic fault reset times is cleared. Setting range of P08.28: 0-10 Setting range of P08.29: 0.1-3600.0s	$0.1 \sim 3600.0$	1.0s	\bigcirc	438.
F13.10	Phase-loss protection	$0 \times 000-0 \times 111$ Ones place: 0 : Disable software input phase loss protection	$\begin{aligned} & 0 \times 000 \sim 0 \times 1 \\ & 11 \end{aligned}$	0x110	-	439.

Function code	Name	Description	Setting range	Default	Modify	SN
		1: Enable software input phase loss protection Tens place: 0: Disable output phase loss protection 1: Enable output phase loss protection Hundreds place: 0: Disable hardware input phase loss protection 1: Enable hardware input phase loss protection				
F13.11	Present fault type	0: No fault	0~70		-	440.
F13.12	Last fault type		0~70		-	441.
F13.13	2nd-last fault type	3: Inverter unit W-phase protection	0~70		-	442.
F13.14	3rd-last fault type		0~70		-	443.
F13.15	4th-last fault type	6: Overcurrent during constant speed running 7: Overvoltage during acceleration	0~70		-	444.
F13.16	5th-last fault type	8: Overvoltage during deceleration 9: Overvoltage during constant speed running 10: Bus undervoltage fault 11: Motor overload 12: VFD overload 13: Phase loss on input side 14: Phase loss on output side 15: Rectifier module overheat 16: Inverter module overheat 17: External fault 18: Modbus communication fault 19: Current detection fault 20: Motor autotuning fault 21: EEPROM operation error 22: PID feedback offline fault 23: Braking unit fault 24: Running time reached 25: Electronic overload 26: Keypad communication error 27: Parameter upload error	0~70		-	445.

Function code	Name	Description	Setting range	Default	Modify	SN
		28: Parameter download error 29: Profibus communication fault 30: Reserved 31: CANopen communication fault 32: To-ground short-circuit fault 1 33: To-ground short-circuit fault 2 34: Speed deviation fault 35: Mal-adjustment fault 36: Underload fault 37: Encoder disconnection fault 38: Encoder direction reversal fault 39: Encoder Z-pulse disconnection fault 40~43: Reserved 44: Safety code FLASH CRC fault 45~54: Reserved 55: Duplicate extension card type 56: Encoder UVW lost 57: Profinet communication fault 58: CAN communication fault 59: Motor overtemperature fault 60: Failure to identify the card at slot 1 61: Failure to identify the card at slot 2 62: Failure to identify the card at slot 3 63: Communication timeout of the card at slot 1 64: Communication timeout of the card at slot 2 65: Communication timeout of the card at slot 3 66: Reserved 67: Bacnet communication fault 68: Reserved 69: CAN slave fault in master/slave synchronization				
F13.17	Running frequency at present fault	$0.00 \mathrm{~Hz} \mathrm{\sim F} \underline{0.07}$	$\begin{aligned} & 0.00 \sim \text { F00.0 } \\ & 7 \end{aligned}$	0.00Hz	\bullet	446.
F13.18	Ramp reference	0.00Hz~F00.07	0.00~F00.0	0.00 Hz	-	447.

Function code	Name	Description	Setting range	Default	Modify	SN
	frequency at present fault		7			
F13.19	Output voltage at present fault	0~1200V	0~1200	OV	-	448.
F13.20	Output current at present fault	0.0~6300.0A	0.0~6300.0	0.0A	-	449.
F13.21	Bus voltage at present fault	0.0~2000.0V	0.0~2000.0	0.0V	\bullet	450.
F13.22	Max. temperature at present fault	$-20.0 \sim 120.0^{\circ} \mathrm{C}$	$\begin{aligned} & -20.0 ~ 120 . \\ & 0 \end{aligned}$	$0.0{ }^{\circ} \mathrm{C}$	\bullet	451.
F13.23	Input terminal status at present fault	0x0000~0xFFFF	$\begin{aligned} & 0 \times 0000 \sim 0 x \\ & \text { FFFF } \end{aligned}$	0	\bullet	452.
F13.24	Output current status at present fault	0x0000~0xFFFF	$\begin{aligned} & \text { 0x0000~0x } \\ & \text { FFFF } \end{aligned}$	0	-	453.
F13.25	Running frequency at last fault	$0.00 \mathrm{~Hz} \sim \underline{\mathrm{~F} 00.07}$	$\begin{aligned} & 0.00 \sim \mathrm{~F} 00.0 \\ & 7 \end{aligned}$	0.00Hz	-	454.
F13.26	Ramp reference frequency at last fault	0.00Hz~ $\underline{00.07}$	$\begin{aligned} & 0.00 \sim \mathrm{~F} 00.0 \\ & 7 \end{aligned}$	0.00Hz	\bullet	455.
F13.27	Output voltage at last fault	0~1200V	0~1200	OV	-	456.
F13.28	Output current at last fault	0.0~6300.0A	0.0~6300.0	0.0A	\bullet	457.
F13.29	Bus voltage at last fault	0.0~2000.0V	0.0~2000.0	0.0V	\bullet	458.
F13.30	Max. temperature at last fault	$-20.0 \sim 120.0^{\circ} \mathrm{C}$	$\begin{aligned} & -20.0 \sim 120 . \\ & 0 \end{aligned}$	$0.0{ }^{\circ} \mathrm{C}$	\bullet	459.
F13.31	Input terminal status at last fault	0x0000~0xFFFF	$\begin{aligned} & \text { 0x0000~0x } \\ & \text { FFFF } \end{aligned}$	0	-	460.
F13.32	Output terminal status at last fault	0x0000~0xFFFF	$\begin{aligned} & \text { 0x0000~0x } \\ & \text { FFFF } \end{aligned}$	0	\bullet	461.
F13.33	Running frequency at 2nd-last fault	0.00Hz~ㅁ00.07	$\begin{aligned} & 0.00 \sim \mathrm{~F} 00.0 \\ & 7 \end{aligned}$	0.00Hz	\bullet	462.

Function code	Name	Description	Setting range	Default	Modify	SN
F13.34	Ramp reference frequency at 2nd-last fault	0.00Hz~N00.07	$\begin{aligned} & \text { 0.00~F00.0 } \\ & 7 \end{aligned}$	0.00Hz	-	463.
F13.35	Output voltage at 2nd-last fault	0~1200V	0~1200	OV	\bullet	464.
F13.36	Output current at 2nd-last fault	0.0~6300.0A	0.0~6300.0	0.0A	-	465.
F13.37	Bus voltage at 2nd-last fault	0.0~2000.0V	0.0~2000.0	0.0V	\bullet	466.
F13.38	Max. temperature at 2nd-last fault	$-20.0 \sim 120.0^{\circ} \mathrm{C}$	$\begin{aligned} & -20.0 ~ 120 . \\ & 0 \end{aligned}$	$0.0{ }^{\circ} \mathrm{C}$	-	467.
F13.39	Input terminal status at 2nd-last fault	0x0000~0xFFFF	$\begin{aligned} & \text { 0x0000~0x } \\ & \text { FFFF } \end{aligned}$	0	\bullet	468.
F13.40	Output terminal status at 2 nd-last fault	0x0000~0xFFFF	$\begin{aligned} & 0 \times 0000 \sim 0 x \\ & \text { FFFF } \end{aligned}$	0	\bullet	469.
F13.41	Fault output terminal action upon fault occurring	The function code is used to set the action of fault output terminals at undervoltage and fault reset. $0 \times 00-0 \times 11$ Ones: 0 : Act at undervoltage 1: Do not act at undervoltage Tens: 0: Act at fault reset 1: Do not act at fault reset	0x00~0x11	0x00	-	470.
F13.42	Frequency drop at transient power-off	0: Disable 1: Enable	0~1	0	\bigcirc	471.
F13.43	Reserved	0-65535	0~65535	0	-	472.
F13.44	Automatic frequency reduction during voltage drop	0-1 0: Invalid 1: Valid	0~1	0	-	473.
F13.45	Pre-alarm selection for VFD/motor	0x000-0x1132 Ones:	$\begin{aligned} & 0 \times 0000 \sim 0 x \\ & 1132 \end{aligned}$	0x0000	\bigcirc	474.

Function code	Name	Description	Setting range	Default	Modify	SN
	OL/UL	0: Motor overload/underload pre-alarm, relative to rated motor current; 1: VFD overload/underload pre-alarm, relative to rated VFD current. Tens: 0 : The VFD continues running after overload/underload alarm; 1: The VFD continues running after underload alarm, and stops running after overload fault; 2: The VFD continues running after overload alarm, and stops running after underload fault; 3: The VFD stops running after overload/underload fault. Hundreds: 0: Always detect 1: Detect during constant-speed running Thousands: VFD overload current reference selection 0 : Related to current calibration coefficient 1: Irrelated to current calibration coefficient				
F13.46	Enabling VFD overload integral	0: Disable 1: Enable When the function code is set to 0 , the overload timing value is reset to zero after the VFD is stopped. In this case, the determination of VFD overload takes more time, and therefore the effective protection over the VFD is weakened. When the function code is set to 1 , the overload timing value is not reset, and the overload timing value is accumulative. In this case, the determination of VFD overload takes less time, and therefore the protection over the VFD can be performed more quickly.	0~1	0	©	475.
F13.47	Overload pre-alarm detection level	If the VFD or motor output current is larger than the overload pre-alarm detection level	$\begin{gathered} \text { F13.49~20 } \\ 0 \end{gathered}$	G type: 150%	\bigcirc	476.

Function code	Name	Description	Setting range	Default	Modify	SN
		(F13.47), and the duration exceeds the overload pre-alarm detection time (F13.48),		$\begin{array}{r} \hline \text { P type: } \\ 120 \% \end{array}$		
F13.48	Overload pre-alarm detection time	overload pre-alarm signal will be outputted. Setting range of F13.47: F13.49-200\% Setting range of F13.48: 0.1-3600.0s	$0.1 \sim 3600.0$	1.0s	-	477.
F13.49	Underload pre-alarm detection level	Underload pre-alarm signal will be outputted if the output current of the VFD or motor is lower than underload pre-alarm detection	0~F13.47	50\%	-	478.
F13.50	Underload pre-alarm detection time	level (F13.49), and the duration exceeds underload pre-alarm detection time (F13.50). Setting range of F13.49: 0-F13.47 Setting range of F13.50: 0.1-3600.0s	0.1~3600.0	1.0s	\bigcirc	479.
F13.51	Speed deviation detection value	$0.0-50.0 \%$ Used to set the speed deviation detection value.	0.0~50.0	10.0\%	\bigcirc	480.
F13.52	Speed deviation detection time	0.0-10.0s Used to set the speed deviation detection time. Note: Speed deviation protection is invalid when F13.52 is set to 0.0 .	0.0~10.0	2.0s	-	481.

Function code	Name	Description	Setting range	Default	Modify	SN
		Setting range: $0.0-10.0 \mathrm{~s}$				
F13.53	Energy braking for stop	$\begin{aligned} & \text { 0: Enable } \\ & \text { 1: Disable } \end{aligned}$	0~1	0	0	482.

| Function
 code | Name | Description | Setting
 range | Default | Modify |
| :---: | :---: | :---: | :---: | :---: | :---: | SN

F14 group-Serial communication

F14.00	Communication baud rate	The function code is used to set the data transmission speed between upper computer and the VFD. 0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS 6: 57600BPS 7: 115200BPS Note: The baud rate set on the VFD must be consistent with that on the upper computer. Otherwise, the communication fails. A greater baud rate indicates faster communication.	0~7	4	\bigcirc	483.
F14.01	Data bit check	The data format set on the VFD must be consistent with that on the upper computer. Otherwise, the communication fails. 0 : No check (N, 8, 1) for RTU 1: Even check ($\mathrm{E}, 8,1$) for RTU 2: Odd check $(O, 8,1)$ for RTU 3: No check $(\mathrm{N}, 8,2)$ for RTU	0~5	1	\bigcirc	484.

Function code	Name	Description	Setting range	Default	Modify	SN
		4: Even check $(E, 8,2)$ for RTU 5: Odd check (O, 8, 2) for RTU				
F14.02	Local communication address	Setting range: 1-247 When the master writes the slave communication address to 0 indicating a broadcast address in a frame, all the salves on the Modbus bus receive the frame but do not respond to it. Local communication address is unique in the communication network, which is the basis for point-to-point communication between the upper computer and the VFD. Note: The communication address of a slave cannot be set to 0 .	1~247	1	\bigcirc	485.
F14.03	Communication response delay	0-200ms The function code indicates the communication response delay, that is, the interval from when the VFD completes receiving data to when it sends response data to the upper computer. If the response delay is shorter than the VFD processing time, the VFD sends response data to the upper computer after processing data. If the delay is longer than the VFD processing time, the VFD does not send response data to the upper computer until the delay is reached although data has been processed.	0~200	5	\bigcirc	486.
F14.04	Communication timeout time	0.0 (invalid)-60.0s When the function code is set to 0.0 , the communication timeout time is invalid. When the function code is set a non-zero value, the rectifier reports the "Modbus communication fault" (CE) if the communication interval exceeds the value. In general, the function code is set to 0.0 . When continuous communication is required, you can set the function code to monitor communication status.	0.0~60.0	0.0s	-	487.

Function code	Name	Description	Setting range	Default	Modify	SN
F14.05	Transmission error processing	0: Report an alarm and coast to stop 1: Keep running without reporting an alarm 2: Stop in enabled stop mode without reporting an alarm (applicable only to communication mode) 3: Stop in enabled stop mode without reporting an alarm (applicable to any mode)	0~3	0	\bigcirc	488.
F14.06	Communication processing action	$0 \times 00-0 \times 11$ Ones place: 0: Respond to write operations 1: Not respond to write operations Tens place: 0: Password protection for communication is invalid. 1: Password protection for communication is valid.	0x00~0x11	0x00	-	489.

| Function
 code | Name | Description | Setting
 range | Default | Modify |
| :---: | :---: | :---: | :---: | :---: | :---: | SN

F15 group-Functions of communication extension card 1

F15.00	Extension card type	0: Profibus_DP 1: CANopen 2: Reserved 3: BACnet 4:Reserved	0~4	0	-	490.
F15.01	Communication address	0~127	0~127	2	\bigcirc	491.
F15.02	Received PZD2	0-31	0~31	0	\bigcirc	492.
F15.03	Received PZD3	1: Set frequency (0-Fmax. Unit: 0.01 Hz)	0~31	0	\bigcirc	493.
F15.04	Received PZD4	2: PID reference (-1000-1000, in which 1000 corresponds to 100.0\%)	0~31	0	\bigcirc	494.
F15.05	Received PZD5	3: PID feedback (-1000-1000, in which 1000	0~31	0	\bigcirc	495.
F15.06	Received PZD6	4: Torque setting (-3000-+3000, in which	0~31	0	\bigcirc	496.

Function code	Name	Description	Setting range	Default	Modify	SN
		20: Electronic gear denominator 21~31: Reserved				
F15.13	Sent PZD2	$0-31$	0~31	0	\bigcirc	503.
F15.14	Sent PZD3	1: Running frequency ($\mathrm{x} 100, \mathrm{~Hz}$)	0~31	0	\bigcirc	504.
F15.15	Sent PZD4	$\begin{aligned} & \text { 2: Set frequency }(x 100, \mathrm{~Hz}) \\ & \text { 3: Bus voltage }(\mathrm{x} 10, \mathrm{~V}) \end{aligned}$	0~31	0	\bigcirc	505.
F15.16	Sent PZD5	4: Output voltage ($\mathrm{x} 1, \mathrm{~V}$)	0~31	0	\bigcirc	506.
F15.17	Sent PZD6	6: Actual output torque ($\times 10, \%$)	0~31	0	\bigcirc	507.
F15.18	Sent PZD7	7: Actual output power (x10, \%) 8: Rotation speed of running ($\times 1$, RPM)	0~31	0	\bigcirc	508.
F15.19	Sent PZD8	9: Linear speed of running ($\mathrm{x} 1 \mathrm{~m} / \mathrm{s}$)	0~31	0	\bigcirc	509.
F15.20	Sent PZD9	11: Fault code	0~31	0	\bigcirc	510.
F15.21	Sent PZD10	12: Al1 input ($x 100$, V) 13: AI2 input ($x 100, \mathrm{~V}$)	0~31	0	\bigcirc	511.
F15.22	Sent PZD11	14: Reserved	0~31	0	\bigcirc	512.
F15.23	Sent PZD12	16: Terminal input status 17: Terminal output status 18: PID reference (x100, \%) 19: PID feedback (x100, \%) 20: Motor rated torque 21: High-order bit of position reference (signed) 22: Low-order bit of position reference (unsigned) 23: High-order bit of position feedback (signed) 24: Low-order bit of position feedback (unsigned) 25: Status word 26: HI2 frequency value ($\mathrm{x} 100, \mathrm{kHz}$) 27~31: Reserved	0~31	0	\bigcirc	513.
F15.24	Sent PZD temporary value 1	0~65535	0~65535	0	\bigcirc	514.

Function code	Name	Description	Setting range	Default	Modify	SN
F15.25	DP communication timeout time	0.0 (invalid)-60.0s	0.0~60.0	1.0s	-	515.
F15.26	CANopen communication timeout time	0.0 (invalid)-60.0s	0.0~60.0	1.0s	\bigcirc	516.
F15.27	CANopen communication baud rate	0-7 0: 1000kbps 1: 800kbps 2: 500 kbps 3: 250kbps 4: 125kbps 5: 100kbps 6: 50kbps 7: 20kbps	0~7	3	\bigcirc	517.
F15.28	Master/slave CAN communication address	0-127	0~127	1	\bigcirc	518.
F15.29	Master/slave CAN communication baud rate selection	0: 50Kbps 1: 100 Kbps 2: 125 Kbps 3: 250Kbps 4: 500Kbps 5: 1M bps	0~5	2	\bigcirc	519.
F15.30	Master/slave CAN communication timeout time	0.0 (invalid)-60.0s	0.0~60.0	0.0s	-	520.
F15.41	BACnet communication mode selection		0~1	0	\bigcirc	521.
F15.42	BACnet_MSTP baud rate	0~5	0~5	0	\bigcirc	522.

| Function
 code | Name | Description | Setting
 range | Default | Modify |
| :---: | :---: | :---: | :---: | :---: | :---: | SN

P16 group-Functions of communication extension card 2

| F16.00 | 0: Reserved
 Extension card type
 selection | 2: Profinet
 3: BACnet_I_M
 4: Reserved | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Function code	Name	Description	Setting range	Default	Modify	SN
	monitoring variable address 2					
F16.16	Ethernet monitoring variable address 3	0~FFFF	0~FFFF	0	\bigcirc	539.
F16.17	Ethernet monitoring variable address 4	0~FFFF	0~FFFF	0	\bigcirc	540.
F16.18	Reserved	0~10000ms	0~10000ms	0	\bigcirc	541.
F16.19	EtherCAT Synchronization cycle	0~4 (0:250us, 1:500us, $2: 1 \mathrm{~ms}, 3: 2 \mathrm{~ms}$)	0~4	2	\bigcirc	542.
F16.20	BACnet equipment number high bit		0~4194	0	\bigcirc	543.
F16.21	BACnet equipment number low bit		0~999	1	\bigcirc	544.
F16.22	BACnet"I-Am" service selection	0: Sent when powered on 1: : Continuously sending	0~1	0	\bigcirc	545.
F16.23	BACnet Communication timeout	0.0 (invalid) ~60.0s	0.0~60.0	1.0s	\bigcirc	546.
P16.24	Time for identifying extension card at slot 1	0.0-600.0s If it is set to 0.0 , identifying faults are not detected.	0.0~600.0	0.0	\bigcirc	547.
P16.25	Time for identifying extension card at slot 2	0.0-600.0s If it is set to 0.0 , identifying faults are not detected.	0.0~600.0	0.0	-	548.
P16.26	Time for identifying extension card at slot 3	$0.0-600.0 \mathrm{~s}$ If it is set to 0.0 , identifying faults are not detected.	0.0~600.0	0.0	\bigcirc	549.
P16.27	Communication timeout time for extension card at slot 1	0.0-600.0s If it is set to 0.0 , identifying faults are not detected.	0.0~600.0	0.0	\bigcirc	550.
P16.28	Communication	0.0-600.0s	0.0~600.0	0.0	-	551.

Function code	Name	Description	Setting range	Default	Modify	SN
	timeout time for extension card at slot 2	If it is set to 0.0 , identifying faults are not detected.				
P16.29	Communication timeout time for extension card at slot 3	0.0-600.0s If it is set to 0.0 , identifying faults are not detected.	0.0~600.0	0.0	-	552.
F16.30	EtherCat Communication timeout	0.0 (invalid) $\sim 60.0 \mathrm{~s}$	0.0~60.0	0.0s	\bigcirc	553.
F16.31	Profinet Communication timeout	0.0 (invalid) $\sim 60.0 \mathrm{~s}$	0.0~60.0	1.0s	\bigcirc	554.
F16.32	Received PZD2	0-31	0~31	0	\bigcirc	555.
F16.33	Received PZD3	1. Set frequen	0~31	0	\bigcirc	556.
F16.34	Received PZD4	2: PID reference (-1000-1000, in which 1000	0~31	0	\bigcirc	557.
F16.35	Received PZD5	corresponds to 100.0\%)	0~31	0	\bigcirc	558.
F16.36	Received PZD6	corresponds to 100.0%)	0~31	0	-	559.
F16.37	Received PZD7	4: Torque setting (-3000-+3000, in which 1000 corresponds to 100.0% of the motor	0~31	0	\bigcirc	560.
F16.38	Received PZD8	rated current)	0~31	0	\bigcirc	561.
F16.39	Received PZD9	5: Setting of the upper limit of forward running	0~31	0	\bigcirc	562.
F16.40	Received PZD10	6: Setting of the upper limit of reverse running	0~31	0	\bigcirc	563.
F16.41	Received PZD11	frequency (0-Fmax. Unit: 0.01 Hz)	0~31	0	\bigcirc	564.
F16.42	Received PZD12	3000 , in which 1000 corresponds to 100.0% of the motor rated current) 8: Upper limit of braking torque ($0-3000$, in which 1000 corresponds to 100% of the motor rated current) 9: Virtual input terminal command (Range: 0x000-0x3FF, corresponding to DI8/DI7/DI6/DI5/HI1/HI2/DI4/DI3/DI2/DI1) 10: Virtual output terminal command (Range: $0 \times 00-0 \times 0 \mathrm{~F}$, corresponding to	0~31	0	\bigcirc	565.

Function code	Name	Description	Setting range	Default	Modify	SN
		RO2/RO1/HDO/Y1) 11: Voltage setting (special for V/F separation) (0-1000, in which 1000 corresponds to 100% of the motor rated voltage) 12: AO1 output setting $1(-1000-+1000$, in which 1000 corresponds to 100.0\%) 13: AO2 output setting 2 ($-1000-1000$, in which 1000 corresponds to 100.0%) 14: High-order bit of position reference (signed) 15: Low-order bit of position reference (unsigned) 16: High-order bit of position feedback (signed) 17: Low-order bit of position feedback (unsigned) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0) 19: Electronic gear molecule 20: Electronic gear denominator 21~31: Reserved				
F16.43	Sent PZD2	0-31	0~31	0	\bigcirc	566.
F16.44	Sent PZD3	1: Running fr	0~31	0	\bigcirc	567.
F16.45	Sent PZD4	2: Set frequency ($\mathrm{x} 100, \mathrm{~Hz}$)	0~31	0	\bigcirc	568.
F16.46	Sent PZD5	3: Bus voltage (x10, V) 4: Output voltage ($\times 1, \mathrm{~V}$)	0~31	0	\bigcirc	569.
F16.47	Sent PZD6	5: Output current ($\times 10, \mathrm{~A}$)	0~31	0	\bigcirc	570.
F16.48	Sent PZD7	6: Actual output torque ($\times 10, \%$) 7: Actual output power (x10, \%)	0~31	0	\bigcirc	571.
F16.49	Sent PZD8	8: Rotation speed of running ($x 1$, RPM)	0~31	0	-	572.
F16.50	Sent PZD9	9: Linear speed of running ($\mathrm{x} 1, \mathrm{~m} / \mathrm{s}$)	0~31	0	\bigcirc	573.
F16.51	Sent PZD10	11: Fault code	0~31	0	\bigcirc	574.
F16.52	Sent PZD11	12: Al1 input (x100, V)	0~31	0	\bigcirc	575.
F16.53	Sent PZD12	13: Al2 input (x100, V) 14: Reserved	0~31	0	\bigcirc	576.

Function code	Name	Description	Setting range	Default	Modify	SN
		15: HI 1 frequency value ($\mathrm{x} 100, \mathrm{kHz}$) 16: Terminal input status 17: Terminal output status 18: PID reference ($\mathrm{x} 100, \%$) 19: PID feedback (x100, \%) 20: Motor rated torque 21: High-order bit of position reference (signed) 22: Low-order bit of position reference (unsigned) 23: High-order bit of position feedback (signed) 24: Low-order bit of position feedback (unsigned) 25: Status word 26~31: Reserved				

Function code	Name	Description	Setting range	Default	Modify	SN
		to enter the correct user password to enter the interface. Note: Restoring the default values may delete the user password. Exercise caution when using this function.				
F17.01	Function parameter restore	0: No operation 1: Restore default values 2: Clear fault records 3: Keyboard parameter locking Note: After the selected operation is performed, the function code is automatically restored to 0 . Restoring the default values may delete the user password. Exercise caution when using this function.	0~3	0	\bigcirc	578.
F17.02	Parameter copy	0: No operation 1: Upload the local function parameter to the keypad 2: Download the keypad function parameter to local address(including the motor parameters) 3: Download the keypad function parameter to local address (excluding the motor parameter) 4: Download the keypad function parameters to local address (only for the motor parameter) Note: After completing the 1-4 operations, the parameter will come back to 0 automatically. Thefunction of upload and download excludes the factory parameters.	0~4	0	\bigcirc	579.
F17.03	MF Key function selection	Range: $0 \times 00-0 \times 27$ Ones: Function of MF 0 : No function 1: Jog 2: Reserved 3: Switch between forward and reverse rotating 4: Clear the UP/DOWN setting	0x00~0x27	0×01	\bigcirc	580.

Function code	Name	Description	Setting range	Default	Modify	SN
		5: Coast to stop 6: Switch command channels in sequence 7: Reserved Tens place: Reserved				
F17.04	Sequence of switching running-command channels by pressing MF	When F17.03=6, set the sequence of switching running-command channels by pressing this key. 0 : Keypad \rightarrow Terminal \rightarrow Communication 1: Keypad \longleftrightarrow Terminal 2: Keypad \longleftrightarrow Communication 3: Terminal \longleftrightarrow Communication	0~3	0	\bigcirc	581.
F17.05	Stop function validity of STOP/RST	The function code specifies the stop function validity of STOP/RST. For fault reset, STOP/RST is valid in any conditions. 0: Valid only for keypad control 1: Valid both for keypad and terminal control 2: Valid both for keypad and communication control 3: Valid for all control modes	0~3	0	\bigcirc	582.
F17.06	Running parameters state 1	0x0000-0xFFFF BITO: running frequency (Hz on) BIT1: set frequency (Hz flickering) BIT2: bus voltage (Hz on) BIT3: output voltage (V on) BIT4: output current (A on) BIT5: running rotation speed (rpm on) BIT6: output power (\% on) BIT7: output torque (\% on) BIT8: PID reference (\% flickering) BIT9: PID feedback value (\% on) BIT10: input terminals state BIT11: output terminals state BIT12: torque set value (\% on) BIT13: pulse counter value BIT14: length value BIT15: PLC and the current stage in	$\begin{aligned} & 0 \times 0000 \sim 0 x \\ & \text { FFFF } \end{aligned}$	0x03FF	-	583.

Function code	Name	Description	Setting range	Default	Modify	SN
		multi-stepspeed				
F17.07	Running parameters state 2	0x0000-0xFFFF BIT0: AI1 (V on) (implemented through the analog potentiometer on the keypad for the 0150G/018P and lower models; not available for the 018G/022P and higher models.) BIT1: AI2 (V on) BIT2: Reserved BIT3: HI1 frequency BIT4: motor overload percentage (\% on) BIT5: the VFD overload percentage (\% on) BIT6: ramp frequency given value (Hz on) BIT7: linear speed BIT8: AC inlet current (A on) BIT9: upper limit frequency (Hz on) BIT10~BIT15: Reserved	0000~FFFF	0x0000	\bigcirc	584.
F17.08	Stopping parameters state	0x0000-0xFFFF BITO: set frequency(Hz on) BIT1: bus voltage (V on) BIT2: input terminals state BIT3: output terminals state BIT4: PID reference (\% flickering) BIT5: PID feedback value (\% on) BIT6: torque setting value (\% on) BIT7: analog Al1 value (V on) BIT8: analog AI2 value (V on) BIT9: Reserved BIT10: high speed pulse HI frequency BIT11: PLC and the current step in multi-step speed BIT12: pulse counters BIT13: length value BIT14: upper limit frequency (Hz on) BIT15: Reserved	$\begin{aligned} & 0 \times 0000 \sim 0 x \\ & \text { FFFF } \end{aligned}$	0x00FF	\bigcirc	585.
F17.09	Frequency display coefficient	$0.01-10.00$ Display frequency $=$ Running frequency	0.01~10.00	1.00	\bigcirc	586.

Function code	Name	Description	Setting range	Default	Modify	SN
		F17.09				
F17.10	Rotational speed display coefficient	$0.1-999.9 \%$ Mechanical rotation speed $=120$ * (Displayed running frequency) *×F17.10/(Number of motor pole pairs)	$\begin{aligned} & 0.1 ~ 999.9 \\ & \% \end{aligned}$	100.0\%	\bigcirc	587.
F17.11	Linear speed display coefficient	$\begin{aligned} & 0.1-999.9 \% \\ & \text { Linear speed }=(\text { Mechanical rotation speed }) \times \\ & \text { F17.11 } \end{aligned}$	$\begin{aligned} & 0.1 ~ 999.9 \\ & \% \end{aligned}$	1.0\%	\bigcirc	588.
F17.12	Rectifier bridge temperature	$-20.0-120.0^{\circ} \mathrm{C}$		0.0	-	589.
F17.13	Inverter temperature	$-20.0-120.0^{\circ} \mathrm{C}$		0.0	-	590.
F17.14	Control board software version	1.00-655.35		0.0000	-	591.
F17.15	Local accumulative running time	0-65535h		0	-	592.
F17.16	VFD electricity consumption high-order bits	Used to display the electricity consumption of the VFD. VFD electricity consumption = F17.16*1000+F17.17		0	-	593.
F17.17	VFD electricity consumption low-order bits	$\begin{aligned} & \text { Setting range of F17.16: } 0-65535 \mathrm{kWh} \\ & \text { (*1000) } \\ & \text { Setting range of F17.17: 0.0-999.9 } \mathrm{kWh} \end{aligned}$		0.0	\bullet	594.
F17.18	VFD type	$\begin{aligned} & \text { 0: } G \text { type } \\ & \text { 1: P type } \end{aligned}$		0	-	595.
F17.19	VFD rated power	0.4-3000.0kW		0.0	\bullet	596.
F17.20	VFD rated voltage	50-1200V		0	-	597.
F17.21	VFD rated current	0.1-6000.0A		0.0	\bullet	598.
F17.22	Factory bar code 1	0x0000-0xFFFF		0	-	599.
F17.23	Factory bar code 2	0x0000-0xFFFFF		0	-	600.
F17.24	Factory bar code 3	0x0000-0xFFFF		0	\bullet	601.
F17.25	Factory bar code 4	0x0000-0xFFFFF		0	-	602.
F17.26	Factory bar code 3	0x0000-0xFFFFF		0	-	603.

Function code	Name	Description	Setting range	Default	Modify	SN
F17.27	Factory bar code 4	$0 \times 0000-0 x F F F F$		0	\bullet	604.
F17.27	Software version	$1.0000 \sim 6.5535$		0.0000	\bullet	605.

Function code	Name	Setting range	Default	Modify	SN

F18 group-Status viewing

F18.00	Set frequency	Displays current set frequency of the VFD. Range: $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$	$\begin{aligned} & 0.00 \sim \mathrm{~F} 00.0 \\ & 7 \end{aligned}$	0.00 Hz	\bullet	606.
F18.01	Output frequency	Displays current output frequency of the VFD. Range: $0.00 \mathrm{~Hz}-\mathrm{F00.03}$	$\begin{aligned} & 0.00 \sim \mathrm{~F} 00.0 \\ & 7 \end{aligned}$	0.00 Hz	\bullet	607.
F18.02	Ramp reference frequency	Displays current ramp reference frequency of the VFD. Range: $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$	$\begin{aligned} & 0.00 ~ F 00.0 \\ & 7 \end{aligned}$	0.00 Hz	\bullet	608.
F18.03	Output voltage	Displays current output voltage of the VFD. Range: 0-1200V	0~1200	OV	\bullet	609.
F18.04	Output current	Displays the valid value of current output current of the VFD. Range: $0.0-5000.0 \mathrm{~A}$	0.0~5000.0	0.0A	\bullet	610.
F18.05	Motor speed	Displays current motor speed. Range: 0-65535RPM	0~65535	0 RPM	\bullet	611.
F18.06	Torque current	Displays current torque current of the VFD. Range: -3000.0-3000.0A	$\begin{aligned} & -3000.0 \sim 30 \\ & 00.0 \end{aligned}$	0.0A	\bullet	612.
F18.07	Exciting current	Displays current exciting current of the VFD. Range: -3000.0-3000.0A	$\begin{aligned} & -3000.0 \sim 30 \\ & 00.0 \end{aligned}$	0.0A	\bullet	613.
F18.08	Motor power	Displays current motor power; 100\% relative to rated motor power, positive value is motoring state, negative value is generating state. Range: -300.0-300.0\% (relative to rated motor power)	$\begin{aligned} & -300.0 ~ 300 \\ & .0 \end{aligned}$	0.0\%	\bullet	614.
F18.09	Motor output torque	Displays current output torque of the VFD; 100\% relative to rated motor torque, during forward running, positive value is motoring state, negative value is generating state,	$\begin{aligned} & -250.0 ~ 250 \\ & .0 \end{aligned}$	0.0\%	\bullet	615.

Function code	Name	Description	Setting range	Default	Modify	SN
		during reverse running, positive value is generating state, negative value is motoring state. Range: -250.0-250.0\%				
F18.10	Estimated motor frequency	Displays the estimated motor rotor frequency under open-loop vector condition. Range: 0.00-F00.03	$\begin{aligned} & 0.00 \sim \\ & \text { F00.07 } \end{aligned}$	0.00 Hz	-	616.
F18.11	DC bus voltage	Displays current DC bus voltage of the VFD. Range: $0.0-2000.0 \mathrm{~V}$	0.0~2000.0	0.0V	-	617.
F18.12	Digital input terminal state	Displays current digital input terminal state of the VFD. 0000-03F Corresponds to HDIB, HDIA, S4, S3, S2 and S1 respectively	0000~03F	0	\bullet	618.
F18.13	Digital output terminal state	Displays current digital output terminal state of the VFD. 0000-000F Corresponds to RO2, RO1, HDO and Y1 respectively	0000~000F	0	-	619.
F18.14	Digital adjustment value	Displays the regulating variable of UP/DOWN. Range: $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$	$\begin{aligned} & \text { 0.00~ } \\ & \text { F00.07 } \end{aligned}$	0.00 Hz	-	620.
F18.15	Torque reference value	Relative to percentage of the rated torque of current motor, display torque reference. Range: -300.0\%-300.0\% (motor rated current)	$\begin{aligned} & -300.0 ~ 300 \\ & .0 \end{aligned}$	0.0\%	\bullet	621.
F18.16	Linear speed	0-65535	0~65535	0	-	622.
F18.17	Reserved	0-65535	0~65535	0	-	623.
F18.18	Counting value	0-65535	0~65535	0	-	624.
F18.19	Al1 input voltage	Displays input signal of Al1 Range: 0.00-10.00V	0.00~10.00	0.00 V	-	625.
F18.20	Al2 input voltage	Displays input signal of AI2 Range: -10.00V-10.00V	$\begin{aligned} & -10.00 \sim 10 . \\ & 00 \end{aligned}$	0.00V	\bullet	626.
F18.21	HDI input frequency	Displays input frequency of HDI Range: $0.000-50.000 \mathrm{kHz}$	$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000 kHz	\bullet	627.

Function code	Name	Description	Setting range	Default	Modify	SN
F18.22					-	628.
F18.23	PID reference value	Displays PID reference value Range: -100.0-100.0\%	$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	-	629.
F18.24	PID feedback value	Displays PID feedback value Range: -100.0-100.0\%	$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bullet	630.
F18.25	Motor power factor	Displays the power factor of current motor. Range: -1.00-1.00	-1.00~1.00	1.00	-	631.
F18.26	Time elapsed of this run	Displays the time elapsed of this run. Range: 0-65535min	0~65535	Om	-	632.
F18.27	Simple PLC and current step number of multi-step speed	Displays simple PLC and current step number of multi-step speed Range: 0-15	0~15	0	-	633.
F18.28	Motor ASR controller output	Displays the speed loop ASR controller output value under vector control mode, relative to the percentage of rated torque of the motor. Range: -300.0\%-300.0\% (rated motor current)	$\begin{aligned} & -300.0 \sim 300 \\ & .0 \end{aligned}$	0.0\%	-	634.
F18.29	Pole angle of open-loop SM	Displays initial identification angle of SM Range: 0.0-360.0	0.0~360.0	0.0	-	635.
F18.30	Phase compensation of SM	Displays phase compensation of SM Range: -180.0-180.0	$\begin{aligned} & -180.0 \sim 180 \\ & .0 \end{aligned}$	0.0	-	636.
F18.31	High-frequency superposition current of SM	0.0\%-200.0\% (rated motor current)	0.0~200.0	0.0	-	637.
F18.32	Motor flux linkage	0.0\%-200.0\%	0.0~200.0	0.0\%	-	638.
F18.33	Exciting current reference	Displays the exciting current reference value under vector control mode Range: -3000.0-3000.0A	$\begin{aligned} & -3000.0 \sim 30 \\ & 00.0 \end{aligned}$	0.0A	-	639.
F18.34	Torque current reference	Displays torque current reference value under vector control mode Range: -3000.0-3000.0A	$\begin{aligned} & -3000.0 \sim 30 \\ & 00.0 \end{aligned}$	0.0A	-	640.
F18.35	AC incoming current	Displays the valid value of incoming current on AC side Range: 0.0-5000.0A	0.0~5000.0	0.0A	-	641.

Function code	Name	Description	Setting range	Default	Modify	SN
F18.36	Output torque	Displays output torque value, during forward running, positive value is motoring state, negative value is generating state; during reverse running, positive value is generating state, negative value is motoring state. Range: - $3000.0 \mathrm{Nm}-3000.0 \mathrm{Nm}$	$\begin{aligned} & -3000.0 \sim 30 \\ & 00.0 \end{aligned}$	0.0Nm	-	642.
F18.37	Motor overload count value	0-65535	0~65535	0	-	643.
F18.38	Process PID output	-100.0\%-100.0\%	$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bullet	644.
F18.39	Function code in parameter download error	0.00-99.00	0.00~99.99	0.00	\bullet	645.
F18.40	Motor control mode	Ones place: Control mode 0 : Vector control 0 1: Vector control 1 2: Space voltage vector control 3: Closed-loop vector control Tens place: Control status 0: Speed control 1: Torque control 2: Position control Hundreds place: Motor number 0: Motor 1 1: Motor 2	$\begin{aligned} & 0 \times 000 \sim 0 \times 1 \\ & 23 \end{aligned}$	0x002	\bullet	646.
F18.41	Electromotive torque upper limit	0.0\%-300.0\% (of the motor rated current)	0.0~300.0	180.0\%	-	647.
F18.42	Braking torque upper limit	0.0\%-300.0\% (of the motor rated current)	0.0~300.0	180.0\%	-	648.
F18.43	Forward rotation upper-limit frequency in torque control	0.00-F00.03	$\begin{aligned} & \text { 0.00~F00.0 } \\ & 7 \end{aligned}$	50.00 Hz	\bullet	649.
F18.44	Reverse rotation upper-limit frequency in torque control	0.00-F00.03	$\begin{aligned} & \text { 0.00~F00.0 } \\ & 7 \end{aligned}$	50.00 Hz	-	650.

Function code	Name	Description	Setting range	Default	Modify	SN
F18.45	Inertia compensation torque	-100.0\%-100.0\%	$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bullet	651.
F18.46	Friction compensation torque	-100.0\%-100.0\%	$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bullet	652.
F18.47	Motor pole pairs	0-65535	0~65535	0	-	653.
F18.48	VFD overload count value	0-65535	0~65535	0	-	654.
F18.49	Frequency set by A source	0.00-F00.03	$\begin{aligned} & 0.00 \sim \text { F00. } 0 \\ & 7 \end{aligned}$	0.00Hz	-	655.
F18.50	Frequency set by B source	0.00-F00.03	$\begin{aligned} & 0.00 \sim \text { F00. } 0 \\ & 7 \end{aligned}$	0.00Hz	-	656.
F18.51	PID proportional output	-100.0\%-100.0\%	$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bullet	657.
F18.52	PID integral output	-100.0\%-100.0\%	$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	\bullet	658.
F18.53	PID differential output	-100.0\%-100.0\%	$\begin{aligned} & -100.0 \sim 100 \\ & .0 \end{aligned}$	0.0\%	-	659.
F18.54	PID present proportional gain	0.00-100.00	$\begin{aligned} & 0.00 \sim 100.0 \\ & 0 \end{aligned}$	0.00	-	660.
F18.55	PID present integral gain	0.00-10.00s	0.00~10.00	0.00	\bullet	661.
F18.56	PID present differential time	0.00-10.00s	0.00~10.00	0.00	\bullet	662.

Function code	Name	Desting range	Default	Modify	SN	
F19 group-Status viewing in closed-loop control						
	F19.00	Actual frequency of encoder	The actual-measured encoder frequency; the value of forward running is positive; the value of reverse running is negative. Range: $-999.9-3276.7 \mathrm{~Hz}$	$-999.9 \sim 327$ 6.7	0.0 Hz	\bullet

Function parameter list

Function code	Name	Description	Setting range	Default	Modify	SN
F19.01	Encoder position count value	Encoder count value, quadruple frequency, Range: 0-65535	0~65535	0	-	664.
F19.02	Encoder Z pulse count value	Corresponding count value of encoder Z pulse. Range: 0-65535	0~65535	0	-	665.
F19.03	High-order bit of position reference value	High-order bit of position reference value, zero out after stop. Range: 0-30000	0~30000	0	-	666.
F19.04	Low-order bit of position reference value	Low-order bit of position reference value, zero out after stop. Range: 0-65535	0~65535	0	-	667.
F19.05	High-order bit of position feedback value	High-order bit of position feedback value, zero out after stop. Range: 0-30000	0~30000	0	-	668.
F19.06	Low-order bit of position feedback value	Low-order bit of position feedback value, zero out after stop. Range: 0-65535	0~65535	0	\bullet	669.
F19.07	Position deviation	Deviation between current reference position and actual running position. Range: -32768-32767	$\begin{aligned} & -32768 ~ 32 \\ & 767 \end{aligned}$	0	\bullet	670.
F19.08	Position of position reference point	Position of reference point of Z pulse when the spindle stops accurately. Range: 0-65535	0~65535	0	\bullet	671.
F19.09	Present position setting of spindle	Current position setup when the spindle stops accurately. Range: 0-359.99	0~359.99	0.00	\bullet	672.
F19.10	Present position when spindle stops accurately	Current position when spindle stops accurately. Range: 0-65535	0~65535	0	-	673.
F19.11	Encoder Z pulse direction	Z pulse direction display. When the spindle stops accurately, there may be a couple of pulses' error between the position of forward and reverse orientation, which can be eliminated by adjusting Z pulse direction of F02.02 or exchanging phase $A B$ of encoder. 0: Forward 1: Reverse	0~1	0	-	674.

Function code	Name	Description	Setting range	Default	Modify	SN
F19.12	Encoder Z pulse angle	Reserved. Range: 0.00-359.99	0~359.99	0.00	-	675.
F19.13	Encoder Z pulse error times	Reserved. Range: 0-65535	0~65535	0	-	676.
F19.14	High-order bit of encoder pulse count value	Encoder pulse count value. The count value is accumulated only if the VFD is powered on. 0-65535	0~65535	0	-	677.
F19.15	Low-order bit of encoder pulse count value	Encoder pulse count value. The count value is accumulated only if the VFD is powered on. 0-65535	0~65535	0	-	678.
F19.16	Reserved	-3276.8-3276.7Hz	$\begin{aligned} & -3276.8 ~ 32 \\ & 76.7 \end{aligned}$	0.0	-	679.
F19.17	Pulse command frequency	Pulse command (A2, B2 terminal) is converted to the set frequency, and it is valid under pulse position mode and pulse speed mode. Range: -3276.8-3276.7Hz	$\begin{aligned} & -3276.8 ~ 32 \\ & 76.7 \end{aligned}$	0.0Hz	-	680.
F19.18	Pulse command feedforward	Pulse command (A2, B2 terminal) is converted to the set frequency, and it is valid under pulse position mode and pulse speed mode. Range: -3276.8-3276.7Hz	$\begin{aligned} & -3276.8 ~ 32 \\ & 76.7 \end{aligned}$	0.0 Hz	-	681.
F19.19	Position regulator output	-327.68-327.67Hz	$\begin{aligned} & -327.68 ~ 32 \\ & 7.67 \end{aligned}$	0.00	\bullet	682.
F19.20	Count value of resolver	Count value of resolver. Range: 0-65535	0~65535	0	-	683.
F19.21	Resolver angle	The pole position angle read according to the resolver-type encoder. Range: 0.00-359.99	0~359.99	0.00	\bullet	684.
F19.22	Pole angle of closed-loop SM	Current pole position. Range: 0.00-359.99	0~359.99	0.00	-	685.
F19.23	Status control word 3	0-65535	0~65535	0	\bullet	686.
F19.24	High-order bit of count value of pulse reference	Pulse command (A2,B2) count value. The count value is accumulated only if the VFD is powered on. $0-65535$	0~65535	0	-	687.

Function parameter list

Function code	Name	Description	Setting range	Default	Modify	SN
F19.25	Low-order bit of count value of pulse reference	Pulse command (A2,B2) count value. The count value is accumulated only if the VFD is powered on. 0-65535	0~65535	0	\bullet	688.
F19.26	Main gear ratio	$-3276.8-3276.7 \mathrm{~Hz}$	$\begin{aligned} & -3276.8 ~ 32 \\ & 76.7 \end{aligned}$	0.0	\bullet	689.
F19.27	Encoder UVW sector	0-7	0~7	0	-	690.
F19.28	Encoder PPR (pulse-perrevolution) display	0-65535	0~65535	0	-	691.
F19.29	Angle compensation value of SM	-180.0-180.0	$\begin{aligned} & -180.0 \sim 180 \\ & .0 \end{aligned}$	0.0	-	692.
F19.30	Reserved	0-65535	$\begin{aligned} & 0.00 \sim 359.9 \\ & 9 \end{aligned}$	0.00	\bullet	693.
F19.31	F Pulse reference Z pulse value	0-65535	0~65535	0	-	694.
F19.32	Reserved	-3276.8-3276.7Hz	$\begin{aligned} & -3276.8 ~ 32 \\ & 76.7 \end{aligned}$	0.0	-	695.
F19.33	Reserved	-3276.8-3276.7Hz	$\begin{aligned} & -3276.8 ~ 32 \\ & 76.7 \end{aligned}$	0.0	-	696.
F19.34	Reserved	0-63	0~63	0	-	697.
F19.35	Reserved	0-65535	0~65535	0	-	698.

Function code	Name	Description	Setting range	Default	Modify	SN
F20 group-Extension card status viewing						
F20.00	Type of card at slot 1	0-65535 0 : No card	0~65535	0	-	699.
F20.01	Type of card at slot 2	1: Reserved 2: I/O card	0~65535	0	-	700.
F20.02	Type of card at slot 3	3: Incremental PG card 4: Incremental PG card with UVW	0~65535	0	-	701.

Function code	Name	Description	Setting range	Default	Modify	SN
		5: Ethernet communication card 6: DP communication card 7: Reserved 8: Resolver PG card 9: CANopen communication card 10: Reserved 11: Profinet communication card 12: Sine/Cosine PG card without CD signal 13: Sine/Cosine PG card with CD signal 14: Absolute encoder PG card 15: CAN master/slave communication card 16~19: Reserved				
F20.03	Software version of extension card at slot 1	0.00-655.35	0~655.35	0.00	-	702.
F20.04	Software version of extension card at slot 2	0.00-655.35	0~655.35	0.00	-	703.
F20.05	Software version of extension card at slot 3	0.00-655.35	0~655.35	0.00	-	704.
F20.06	Terminal input status of extension I/O card	0-0xFFFF	0~0xFFFF	0	-	705.
F20.07	Terminal output status of extension I/O card	0-0xFFFF	0~0xFFFF	0	-	706.
F20.08	HI3 input frequency of extension I/O card	0.000-50.000kHz	$\begin{aligned} & 0.000 \sim 65.5 \\ & 35 \end{aligned}$	0.000kHz	-	707.
F20.09	Al3 input voltage of extension I/O card	0.00-10.00V	0.00~10.00	0.00 V	-	708.

Function code	Name	Description	Setting range	Default	Modify	SN

Function code	Name	Description	Setting range	Default	Modify	SN
F21.00	Positioning mode	Ones place: Control mode selection (only for closed-loop vector control) 0 : Speed control 1: Position control Tens place: Position command source 0 : Pulse string, using PG card terminal (A2, B2) pulse giving signal for position control 1: Digital position, using the setting of F21.17 for position control, while the positioning mode can be set through F21.16 2: Positioning of photoelectric switch during stop. When a terminal receives a photoelectric switch signal (selection terminal function 43), the VFD starts positioning for stop, and the stop distance can be set through F21.17. Hundred place: Position feedback source 0: Encoder signal 1: Reserved Thousands: servo mode Bit0: Position deviation mode 0: No deviation 1: With deviation Bit1: Enable/disable servo 0: Disable (The servo can be enabled by terminals.) 1: Enable Bit2: Reserved Note: In the pulse string or spindle positioning mode, the VFD enters the servo operation mode when there is a valid servo enabling signal. If there is no servo enabling signal, the VFD enter the servo operation mode only after it receives a forward running or reverse running command.	0~0x7121	00	\bigcirc	709.
F21.01	Pulse command mode	Ones place: Pulse mode 0 : A / B quadrature pulse; A leads B 1: A: PULSE; B: SIGN	0~0x3133	0x000	\bigcirc	710.

Function code	Name	Description	Setting range	Default	Modify	SN
		If channel B is of low electric level, the edge counts up; if channel B is of high electric level, the edge counts down. 2: A: Positive pulse Channel A is positive pulse; channel B needs no wiring 3: A / B dual-channel pulse; channel A pulse edge counts up, channel B pulse edge counts down Tens place: Pulse direction Bit0: Set pulse direction 0: Forward 1: Reverse Bit1: Set pulse direction by running direction 0: Disable, and BITO is valid; 1: Enable Hundreds place: Pulse/direction frequency-multiplication selection (reserved) 0 : No frequency- multiplication 1: Frequency- multiplication Thousands place: Pulse control selection Bit0: Pulse filter selection 0 : Inertia filter 1: Average moving filter Bit1: Overspeed control 0: No control 1: Control				
F21.02	APR gain 1	The two automatic position regulator (APR)	0~400.0	20.0	\bigcirc	711.
F21.03	APR gain 2	gains are switched based on the switching mode set in F21.04. When the spindle orientation function is used, the gains are switched automatically, regardless of the setting of F21.04. F21.03 is used for dynamic running, and F21.02 is used for maintaining the locked state. Setting range: 0.0-400.0	0~400.0	30.0	-	712.
F21.04	Switching mode of position loop gain	The function code is used to set the APR gain switching mode. To use torque	0~5	0	\bigcirc	713.

Function code	Name	Description	Setting range	Default	Modify	SN
		command-based switching, you need to set F21.05; and to use speed command-based switching, you need to set F21.06. 0 : No switching 2: Torque command 3: Speed command 3-5: Reserved				
F21.05	Torque command level during position gain switchover	Setting range: $0.0-100.0 \%$ (of the motor rated torque)	0~100.0	10.0\%	\bigcirc	714.
F21.06	Speed command level during position gain switchover	0.0-100.0\% (of the motor rated speed)	0~100.0	10.0\%	\bigcirc	715.
F21.07	Smooth filter coefficient during gain switchover	Smooth filter coefficient during position gain switchover. Setting range: 0-15	0~15	5	-	716.
F21.08	Output limit of position controller	The output limit of position regulator, if the limit value is 0 , position regulator will be invalid, and no position control can be performed, however, speed control is available. Setting range: $0.0-100.0 \%$ (of the max. output frequency F00.03)	0~100.0	20.0\%	-	717.
F21.09	Completion range of positioning	When the position deviation is less than F21.09, and the duration is larger than F21.10, positioning completion signal will be outputted. Setting range: 0-1000	0~1000	10	-	718.
F21.10	Detection time for positioning completion	0.0-1000.0ms	0~1000.0	10.0ms	-	719.
F21.11	Numerator of position command ratio	Electronic gear ratio, used to adjust the corresponding relation between position command and actual running displacement. Setting range: 1-65535	1~65535	1000	-	720.
F21.12	Denominator of position command	Setting range: 1-65535	1~65535	1000	-	721.

Function parameter list

Function code	Name	Description	Setting range	Default	Modify	SN
	ratio					
F21.13	Position feedforward gain	$0.00-120.00 \%$ For pulse string reference only (position control)	0~120.00	100.00	\bigcirc	722.
F21.14	Position feedforward filter time constant	$0.0-3200.0 \mathrm{~ms}$ For pulse string reference only (position control)	0~3200.0	3.0 ms	\bigcirc	723.
F21.15	Position command filter time constant	The position feedforward filter time constant during pulse string positioning. $0.0-3200.0 \mathrm{~ms}$	0~3200.0	0.0 ms	\bigcirc	724.
F21.16	Digital positioning mode	Bit0: Positioning mode selection 0 : Relative position 1: Absolute position (home) (reserved) Bit1: Positioning cycle selection 0 : Cyclic positioning by terminals 1: Automatic cyclic positioning Bit2: Cycle mode 0: Continuous 1: Repetitive (supported by automatic cyclic positioning only) Bit3: F21.17 digital setting mode 0: Incremental 1: Position type (do not support continuous mode) Bit4: Home searching mode 0: Search for the home just once 1: Search for the home during each run Bit5: Home calibration mode 0 : Calibrate in real time 1: Single calibration Bit6: Positioning completion signal selection 0: Valid during the time set by F21.25 (Hold time of positioning completion signal) 1: Always valid Bit7: Initial positioning selection (for cyclic positioning by terminals) 0 : Invalid (do not rotate) 1: Valid	0~0xFFFF	0	\bigcirc	725.

Function code	Name	Description	Setting range	Default	Modify	SN
		Bit8: Positioning enable signal selection (for cyclic positioning by terminals only; positioning function is always enabled for automatic cyclic positioning) 0 : Pulse signal 1: Level signal Bit9: Position source 0: F21.17 setting 1: PROFIBUS/CANopen setting Bit10: Whether to save encoder pulse counting value at power failure 0: Not save 1: Save Bit11: Reserved Bit12: Positioning curve selection (reserved) 0 : Straight line 1: S curve				
F21.17	Position digital reference	Set digital positioning position.	0~65535	0	\bigcirc	726.
F21.18	Positioning speed setting selection	$\begin{aligned} & \text { 0: F21.19 } \\ & \text { 1: Al1 } \\ & \text { 2: Al2 } \\ & \text { 3: Al3 } \\ & \text { 4: High-speed pulse HDIA } \\ & \text { 5: High-speed pulse HDIB } \end{aligned}$	0~5	0	\bigcirc	727.
F21.19	Positioning speed digits	0-100.0\% (of the max. frequency)	0~100.0	20.0\%	\bigcirc	728.
F21.20	ACC time of positioning	Set the ACC/DEC time of positioning process. ACC time of positioning means the time	0~300.00	3.00s	\bigcirc	729.
F21.21	DEC time of positioning	Max. output frequency (F00.07). DEC time of positioning means the time needed for the VFD to decelerate from Max. output frequency (F00.07) to Ohz. Setting range of F21.20: 0.01-300.00s Setting range of F21.21: 0.01-300.00s	0~300.00	3.00s	-	730.

Function parameter list

Function code	Name	Description	Setting range	Default	Modify	SN
F21.22	Hold time of positioning arrival	Set the hold time of waiting when target positioning position is reached. Setting range: 0.000-60.000s	0~60.000	0.100s	\bigcirc	731.
F21.23	Home search speed	0.00-50.00Hz	0~50.00	2.00 Hz	\bigcirc	732.
F21.24	Home position offset	0-65535	0~65535	0	\bigcirc	733.
F21.25	Hold time of positioning completion signal	The hold time of positioning completion signal, the function code is also valid for positioning completion signal of spindle orientation. Setting range: $0.000-60.000 \mathrm{~s}$	0~60.000	0.200s	\bigcirc	734.
F21.26	Pulse superposition value	$\begin{aligned} & \text { F21.26: -9999-32767 } \\ & \text { F21.27: } 0-3000.0 / \mathrm{ms} \end{aligned}$	0~65535	0	\bigcirc	735.
F21.27	Pulse superposition speed	The function is valid only when $\underline{\text { F00.03 }}=12$ or F21.00=1:	0~6553.5	8.0	\bigcirc	736.
F21.28	ACC/DEC time after pulse disabling	1: Input terminal function 68 When the terminal rise edge is detected, the pulse setting is increased by F21.26, and the pulse given channel is compensated at the rate specified by F21.27. 2: Input terminal function 67 When the terminal is valid, the pulse value is superposed to the pulse given channel at the rate specified by F21.27. Note: F08.07 may have slight impact on the actual superposition value. Example: F21.27 $=1.0 / \mathrm{ms}$ $\mathrm{F} 08.04=67$ When the S 5 terminal input signal is 0.5 s , the actual number of pulses superposed is 500 . 3: Input terminal function 69 The timing sequence of this value is the same as that of the previous value, with the only difference that the number is negative. Note: The pulses are superposed to the pulse given channels (A2 and B2), and the	0~3000.0	5.0s	\bigcirc	737.

Function code	Name	Description	Setting range	Default	Modify	SN
		functions such as the filter and electric cam for pulses are valid for superposed pulses. 4: Input terminal function 28 The output terminal is valid during pulse superposition, but it is invalid after pulse superposition.				
F21.29	Speed feedforward filter time constant (pulse string speed mode)	It is the filter time constant detected by pulse string when the speed reference source is set to pulse string (when F00.03=12 or F00.04=12 Setting range: $0-3200.0 \mathrm{~ms}$	0~3200.0	10.0ms	\bigcirc	738.
F21.30	Numerator of the 2nd command ratio	1-65535	1~65535	1000	\bigcirc	739.

Function code	Name	Description	Setting range	Default	Modify	SN
F22 group-Spindle positioning						
F22.00	Spindle positioning mode selection	Bit0: Enable spindle positioning 0: Disable 1: Enable Bit1: Select spindle positioning reference point 0 : Z pulse input 1: $S 2 / S 3 / S 4$ terminal input Bit2: Search for reference point 0 : Search the reference point only once 1: Search the reference point every time Bit3: Enable reference point calibration 0: Disable 1: Enable Bit4: Positioning mode selection 1 0 : Set direction positioning 1: Near-by direction positioning Bit5: Positioning mode selection 2 0 : Forward positioning 1: Reverse positioning Bit6: Zeroing command selection	0~0x0FFFF	0	-	740.

Function code	Name	Description	Setting range	Default	Modify	SN
		0: Electric level mode 1: Pulse mode Bit7: Reference point calibration mode 0: Calibrate at the first time 1: Calibrate in real time Bit8: Action selection after zeroing signal cancellation (electric level type) 0: Switch to speed mode 1: Position lock mode Bit9: Positioning completion signal selection 0: Electric level signal 1: Pulse signal Bit10: Z pulse signal source 0: Motor 1: Spindle Bit11-15: Reserved				
F22.01	Speed of spindle orientation	During spindle orientation, the speed of the position point of orientation will be searched, and then it will switch over to position control orientation. Setting range: $0.00-100.00 \mathrm{~Hz}$	0~100.00	10.00 Hz	-	741.
F22.02	DEC time of spindle orientation	DEC time of spindle orientation. Spindle orientation DEC time means the time needed for the VFD to decelerate from Max. output frequency (F00.07) to 0 Hz . Setting range: $0.0-100.0$ s	0.1~100.0	3.0s	-	742.
F22.03	Spindle zeroing position 0	You can select the zeroing positions of four spindles by terminals (function code 46, 47). Setting range: 0-65535	0~39999	0	\bigcirc	743.
F22.04	Spindle zeroing position 1	Setting range: 0-65535	0~39999	0	\bigcirc	744.
F22.05	Spindle zeroing position 2	Setting range: 0-65535	0~39999	0	-	745.
F22.06	Spindle zeroing position 3	Setting range: 0-65535	0~39999	0	\bigcirc	746.
F22.07	Spindle scale-division angle	You can select seven spindle scale-division values by terminals (function code 48, 49 and	0~359.99	15.00	\bigcirc	747.

Function code	Name	Description	Setting range	Default	Modify	SN
	1	50). Setting range: 0.00-359.99				
F22.08	Spindle scale-division angle 2	Setting range: 0.00-359.99	0~359.99	30.00	\bigcirc	748.
F22.09	Spindle scale-division angle 3	Setting range: 0.00-359.99	0~359.99	45.00	\bigcirc	749.
F22.10	Spindle scale-division angle	Setting range: 0.00-359.99	0~359.99	60.00	\bigcirc	750.
F22.11	Spindle scale-division angle 5	Setting range: 0.00-359.99	0~359.99	90.00	-	751.
F22.12	Spindle scale-division angle 6	Setting range: 0.00-359.99	0~359.99	120.00	-	752.
F22.13	Spindle scale-division angle 7	Setting range: 0.00-359.99	0~359.99	180.00	-	753.
F22.14	Spindle drive ratio	This function code sets the reduction ratio of the spindle and the mounting shaft of the encoder. Setting range: 0.000-30.000	$\begin{aligned} & 0.001 ~ 30.0 \\ & 00 \end{aligned}$	1.000	\bigcirc	754.
F22.15	Zero-point communication setup of spindle	F22.15 sets spindle zero-point offset, if the selected spindle zero point is F22.03, the final spindle zero point will be the sum of $\underline{F 22.03}$ and F22.15. Setting range: 0-39999	0~39999	0	-	755.
F22.16	Reserved	0-65535	0~65535	0	\bigcirc	756.
F22.17	Reserved	0-65535	0~65535	0	\bigcirc	757.
F22.18	Rigid tapping selection	Ones place: Whether to enable 0 : Disable (but can be enabled through terminal, using function 58) 1: Enable (internally enabled) Tens place: Analog port selection	0~0x31	0x00	\bigcirc	758.

Function code	Name	Description	Setting range	Default	Modify	SN
		0 : Invalid 1: AI1 2: AI2 3: AI3				
F22.19	Analog filter time of rigid tapping	0.0ms-1000.0ms	0.0~1000.0	1.0 ms	\bigcirc	759.
F22.20	Max. frequency of rigid tapping	0.00-400.00Hz	$\begin{aligned} & 0.00 \sim 400.0 \\ & 0 \end{aligned}$	50.00 Hz	\bigcirc	760.
F22.21	Corresponding frequency of analog zero drift of rigid tapping	0.00-10.00Hz	0.00~10.00	0.00Hz	-	761.
F22.22	Pulse-given speed measure method	0: Main control board 1: PG card 2: Hybrid	0~2	0	\bigcirc	762.
F22.23	Pulse setting feedforward source selection	$0 \times 00 \sim 0 \times 11$ Ones: Main frequency Tens: Pulse string speed setting	00~11	0	\bigcirc	763.
F22.24	Encoder count reset setting value	0-65535	0~65535	0	\bigcirc	764.

Function code	Name	Description	Setting range	Default	Modify	SN

F23 group-Extension I/O card input functions

F23.00	Function of DI5	The same as those in F08	0~79	0	\bigcirc	765.
F23.01	Function of DI6		0~79	0	\bigcirc	766.
F23.02	Function of DI7		0~79	0	O	767.
F23.03	Function of DI8		0~79	0	©	768.
F23.08	Extension card input terminal polarity selection	0x00-0x7F	$\begin{aligned} & \text { 0x000~0x7 } \\ & F \end{aligned}$	0x00	©	769.
F23.09	DI5 switch-on delay	Setting range: 0.000-50.000s	$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \\ & \hline \end{aligned}$	0.000s	\bigcirc	770.

Function code	Name	Description	Setting range	Default	Modify	SN
F23.10	DI5 switch-off delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \\ & \hline \end{aligned}$	0.000s	\bigcirc	771.
F23.11	DI 6 switch-on delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \\ & \hline \end{aligned}$	0.000s	\bigcirc	772.
F23.12	DI 6 switch-off delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \\ & \hline \end{aligned}$	0.000s	-	773.
F23.13	DI 7 switch-on delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	-	774.
F23.14	DI 7 switch-off delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	775.
F23.15	DI 8 switch-on delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \\ & \hline \end{aligned}$	0.000s	-	776.
F23.16	DI 8 switch-off delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	-	777.
F23.23	Virtual terminal setting of extension card	0x000-0x7F (0: Disable, 1: Enable) BITO: S5 virtual terminal BIT1: S6 virtual terminal BIT2: S7 virtual terminal BIT3: S8 virtual terminal BIT4: S9 virtual terminal BIT5: S10 virtual terminal BIT6: HDI3 virtual terminal	$\begin{aligned} & 0 \times 000 \sim 0 \times 7 \\ & F \end{aligned}$	0×00	-	778.
F23.24	Al3 lower limit		$\begin{aligned} & 0.00 \mathrm{~V} \sim \mathrm{~F} 23 . \\ & 26 \end{aligned}$	0.00V	\bigcirc	779.
F23.25	Corresponding setting of Al3 lower limit	Note: Al3 can support $0-10 \mathrm{~V} / 0-20 \mathrm{~mA}$ input, when Al3 select $0-20 \mathrm{~mA}$ input, the corresponding voltage of 20 mA is 10 V .	$\begin{aligned} & -300.0 ~ 300 \\ & .0 \end{aligned}$	0.0\%	-	780.
F23.26	Al3 upper limit	Setting range of F23.24: 0.00V-F23.26 Setting range of F23.25: -300.0\%-300.0\%	$\begin{aligned} & \text { F23.24~10. } \\ & 00 \end{aligned}$	10.00 V	\bigcirc	781.
F23.27	Corresponding setting of A13 upper limit	Setting range of F23.26: F23.24-10.00V Setting range of F23.27: - $300.0 \%-300.0 \%$ Setting range of F23.28: 0.000s-10.000s	$\begin{aligned} & -300.0 ~ 300 \\ & .0 \end{aligned}$	100.0\%	-	782.
F23.28	Al3 input filter time		$\begin{aligned} & 0.000 ~ 10.0 \\ & 00 \end{aligned}$	0.030s	-	783.
F23.40	Al3 input signal type	Range: 0-1 0 : Voltage 1: Current	0~1	0	\bigcirc	784.

Function code	Name	Description	Setting range	Default	Modify	SN
F24 group-Extension I/O card output functions						
F24.02	DO2 output	Same as those in $\underline{\text { F09.01 }}$	0~63	0	-	785.
F24.04	T3 output		0~63	0	\bigcirc	786.
F24.05	T4 output		0~63	0	-	787.
F24.12	Extension card output terminal polarity	0x0000-0x7FF T10, T9...T3, HO2, DO3, DO2 in sequence	000~1FFF	0x000	\bigcirc	788.
F24.15	DO2 switch-on delay	Setting range: 0.000-50.000s	$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	-	789.
F24.16	DO2 switch-off delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	790.
F24.19	T3 switch-on delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	791.
F24.20	T3 switch-off delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	792.
F24.21	T4 switch-on delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	-	793.
F24.22	T4 switch-off delay		$\begin{aligned} & 0.000 \sim 50.0 \\ & 00 \end{aligned}$	0.000s	\bigcirc	794.

Function code	Name	Description	Setting range	Default	Modify	SN
F25 group-Master/slave control						
F25.00	Master/slave mode	0: Master/slave control is invalid 1: The local machine is a master 2: The local machine is a slave	0~2	0	\bigcirc	795.
F25.01	Master/slave communication data selection	$\begin{aligned} & 0: \text { CAN } \\ & 1: \text { Reserved } \end{aligned}$	0~1	0	\bigcirc	796.
F25.02	Master/slave control mode	Ones place: Master/slave running mode selection 0 : Master/slave mode 0	0~0x112	0x001	\bigcirc	797.

Function code	Name	Description	Setting range	Default	Modify	SN
		(The master and slave adopt speed control and maintain the power balance by droop control) 1: Master/slave mode 1 (The master and slave must be in the same type of vector control mode. The master is speed control, and the slave will be forced to be in the torque control mode. 2: Master/slave mode 2 Start in the slave first speed mode (master/slave mode 0) and then switch to torque mode at a certain frequency point (master/slave mode 1) Tens place: Slave start command source selection 0: Follow the master to start 1: Determined by F00.02 Hundreds place: Slave transmitting/master receiving data enable 0: Enable 1: Disable				
F25.03	Slave speed gain	0.0-500.0\%	0.0~500.0	100.0\%	\bigcirc	798.
F25.04	Slave torque gain	0.0-500.0\%	0.0~500.0	100.0\%	\bigcirc	799.
F25.05	Speed/torque mode switching frequency point in master/slave mode 2	0.00-10.00Hz	0.00~10.00	5.00	-	800.
F25.06	Slave count	0-15	0~15	1	\bigcirc	801.

Function code	Name	Description	Setting range	Default	Modify	SN

F26 group-Extension card reservation function group

F26.00	Reserved monitoring variables	$0 \sim 1$	$0 \sim 1$	0	0
802.					

Function parameter list

Function code	Name	Description	Setting range	Default	Modify	SN
F26.01	Reserved monitoring variables	0~65535	0~65535	0	\bigcirc	803.
F26.02	Reserved monitoring variables	0~65535	0~65535	0	\bigcirc	804.
F26.03	Reserved monitoring variables	0~65535	0~65535	0	\bigcirc	805.
F26.04	Reserved monitoring variables	0~65535	0~65535	0	\bigcirc	806.
F26.05	Reserved monitoring variables	0~65535	0~65535	0	\bigcirc	807.
F26.06	Reserved monitoring variables	0~65535	0~65535	0	\bigcirc	808.
F26.07	Reserved monitoring variables	0~65535	0~65535	0	\bigcirc	809.
F26.08	Reserved monitoring variables	0~65535	0~65535	0	\bigcirc	810.
F26.09	Reserved monitoring variables	-32768~32767	$\begin{aligned} & -32768 ~ 32 \\ & 767 \end{aligned}$	0	\bigcirc	811.
F26.10	Reserved monitoring variables	-32768~32767	$\begin{aligned} & -32768 ~ 32 \\ & 767 \end{aligned}$	0	\bigcirc	812.
F26.11	Reserved monitoring variables	0~1	0~1	0	-	813.
F26.12	Reserved monitoring variables	0~65535	0~65535	0	-	814.
F26.13	Reserved monitoring variables	0~65535	0~65535	0	-	815.
F26.14	Reserved monitoring variables	0~65535	0~65535	0	\bullet	816.
F26.15	Reserved monitoring variables	0~65535	0~65535	0	\bullet	817.
F26.16	Reserved monitoring variables	0~65535	0~65535	0	\bullet	818.
F26.17	Reserved monitoring variables	0~65535	0~65535	0	\bullet	819.
F26.18	Reserved monitoring variables	0~65535	0~65535	0	-	820.

Function code	Name	Description	Setting range	Default	Modify	SN
F26.19	Reserved monitoring variables	0~65535	0~65535	0	-	821.
F26.20	Reserved monitoring variables	-32768~32767	$\begin{aligned} & -32768 ~ 32 \\ & 767 \end{aligned}$	0	\bullet	822.
F26.21	Reserved monitoring variables	-32768~32767	$\begin{aligned} & -32768 ~ 32 \\ & 767 \end{aligned}$	0	\bullet	823.
F26.22	Reserved monitoring variables	0~65535	0~65535	0	-	824.
F26.23	Reserved monitoring variables	0~65535	0~65535	0	\bullet	825.
F26.24	Reserved monitoring variables	0~65535	0~65535	0	-	826.
F26.25	Reserved monitoring variables	0~65535	0~65535	0	-	827.
F26.26	Reserved monitoring variables	0~65535	0~65535	0	-	828.
F26.27	Reserved monitoring variables	0~65535	0~65535	0	-	829.
F26.28	Reserved monitoring variables	0~65535	0~65535	0	\bullet	830.
F26.29	Reserved monitoring variables	0~65535	0~65535	0	-	831.

Function code	Name	Description	Setting range	Default	Modify	SN
F28 group-Parameters of motor 2	$0 \sim 1$	0	\bigcirc	832.		
F28.00	Type of motor 2	0: Asynchronous motor (AM) 1: Synchronous motor (SM)	$0.1 \sim 3000.0$	Model depended	\bigcirc	833.
F28.01	Rated power of AM 2	$0.1-3000.0 \mathrm{~kW}$	$0 \sim 1200$	Model depended	\bigcirc	834.
F28.02	Rated voltage of AM 2	$0-1200 \mathrm{~V}$	$0.8 \sim 6000.0$	Model depended	\bigcirc	835.
F28.03	Rated current of AM 2	$0.8-6000.0 \mathrm{~A}$				

Function parameter list

Function code	Name	Description	Setting range	Default	Modify	SN
F28.03	Rated frequency of AM 2	$0.01 \mathrm{~Hz}-\mathrm{F00.07}$ (Max. output frequency)	$\begin{aligned} & 0.01 ~ \mathrm{~F} 00.0 \\ & 7 \end{aligned}$	50.00 Hz	\bigcirc	836.
F28.05	Rated speed of AM 2	1-60000rpm	1~60000	Model depended	\bigcirc	837.
F28.06	Stator resistance of AM 2	0.001-65.535	$\begin{aligned} & 0.001 ~ 65.5 \\ & 35 \end{aligned}$	Model depended	-	838.
F28.07	Rotor resistance of AM 2	0.001-65.535	$\begin{aligned} & 0.001 ~ 65.5 \\ & 35 \end{aligned}$	Model depended	\bigcirc	839.
F28.08	Leakage inductance of AM 2	$0.1-6553.5 \mathrm{mH}$	0.1~6553.5	Model depended	-	840.
F28.09	Mutual inductance of AM 2	$0.1-6553.5 \mathrm{mH}$	0.1~6553.5	Model depended	\bigcirc	841.
F28.10	No-load current of AM 2	0.1-6553.5A	0.1~6553.5	Model depended	\bigcirc	842.
F28.11	Magnetic saturation coefficient 1 of iron core of AM 2	0.0-100.0\%	0.0~100.0	80.0\%	-	843.
F28.12	Magnetic saturation coefficient 2 of iron core of AM 2	0.0-100.0\%	0.0~100.0	68.0\%	-	844.
F28.13	Magnetic saturation coefficient 3 of iron core of AM 2	0.0-100.0\%	0.0~100.0	57.0\%	-	845.
F28.14	Magnetic saturation coefficient 4 of iron core of AM 2	0.0-100.0\%	0.0~100.0	40.0\%	\bigcirc	846.
F28.15	Rated power of SM 2	0.1-3000.0kW	0.1~3000.0	Model depended	\bigcirc	847.
F28.16	Rated voltage of SM 2	0-1200V	0~1200	Model depended	0	848.
F28.17	Rated current of SM 2	0.8-6000.0A	0.8~6000.0	Model depended	0	849.
F28.18	Rated frequency of SM 2	$0.01 \mathrm{~Hz}-\mathrm{F00.07}$ (Max. output frequency)	$\begin{aligned} & 0.01 ~ \mathrm{~F} 00.0 \\ & 7 \end{aligned}$	50.00 Hz	\bigcirc	850.
F28.19	Number of pole pairs of SM 2	1-128	1~128	2	\bigcirc	851.

Function code	Name	Description	Setting range	Default	Modify	SN
F28.20	Stator resistance of SM 2	0.001-65.535	$\begin{aligned} & 0.001 \sim 65.5 \\ & 35 \end{aligned}$	Model depended	\bigcirc	852.
F28.21	Direct-axis inductance of SM 2	0.01-655.35mH	$\begin{aligned} & 0.01 ~ 655.3 \\ & 5 \end{aligned}$	Model depended	\bigcirc	853.
F28.22	Quadrature-axis inductance of SM 2	$0.01-655.35 \mathrm{mH}$	$\begin{aligned} & 0.01 \sim 655.3 \\ & 5 \end{aligned}$	Model depended	-	854.
F28.23	Counter-emf constant of SM 2	0-10000V	0~10000	300	\bigcirc	855.
F28.24	Reserved	0-0xFFFF	0~0xFFFF	0x0000	-	856.
F28.25	Reserved	0\%-50\% (of the motor rated current)	0~50	10\%	-	857.
F28.26	Parameter display selection of motor 2	0: Display by motor type. In this mode, only parameters related to the present motor type are displayed. 1: Display all. In this mode, all the motor parameters are displayed.	0~1	0	\bigcirc	858.
F28.27	System inertia of motor 2	0-30.000kgm2	0~30.000	0.000	\bigcirc	859.

Function code	Name	Description	Setting range	Default	Modify	SN
F29 group-Encoder of motor 2						
F29.00	Encoder type display	0 : Incremental encoder 1: Resolver-type encoder 2: Sin/Cos encoder 3: Endat absolute encoder	0~65535	0	-	860.
F29.01	Encoder pulse number	Number of pulses generated when the encoder revolves for one circle. Setting range: 0-60000	0~60000	1024	\bigcirc	861.
F29.02	Encoder direction	Ones: $A B$ direction 0 : Forward 1: Reverse Tens: Z pulse direction (reserved) 0: Forward 1: Reverse Hundreds: CD/UVW pole signal direction 0: Forward	0~0x111	0x000	\bigcirc	862.

Function code	Name	Description	Setting range	Default	Modify	SN
		1: Reverse				
F29.03	Detection time of encoder offline fault	0.0-10.0s	0.0~10.0	2.0s	\bigcirc	863.
F29.04	Detection time of encoder reversal fault	0.0-100.0s	0.0~100.0	0.8s	\bigcirc	864.
F29.05	Filter times of encoder detection	Setting range: 0x00-0x99 Ones place: Low-speed filter time, corresponds to $2^{\wedge}(0-9) \times 125 \mu \mathrm{~s}$. Tens place: High-speed filter times, corresponds to $2^{\wedge}(0-9) \times 125 \mu \mathrm{~s}$.	0~0x99	0×33	\bigcirc	865.
F29.06	Speed ratio between encoder mounting shaft and motor	You need to set the function code when the encoder is not installed on the motor shaft and the drive ratio is not 1 . Setting range: 0.001-65.535	0~65.535	1.000	\bigcirc	866.
F29.07	Control parameters of SM 2	Bit0: Enable Z pulse calibration Bit1: Enable encoder angle calibration Bit2: Enable SVC speed measurement Bit3: Reserved Bit4: Reserved Bit5: Reserved Bit6: Enable CD signal calibration Bit7: Reserved Bit8: Do not detect encoder fault during autotuning Bit9: Enable Z pulse detection optimization Bit10: Enable initial Z pulse calibration optimization Bit12: Clear Z pulse arrival signal after stop	$\begin{aligned} & \text { 0x0000~0x } \\ & \text { FFFF } \end{aligned}$	0x0003	-	867.
F29.08	Enabling Z pulse offline detection	0x00-0x11 Ones place: Z pulse 0: Do not detect 1: Enable Tens place: UVW pulse (for SM) 0: Do not detect 1: Enable	00~11	0x10	-	868.
F29.09	Initial angle of Z	Relative electric angle of encoder Z pulse and	0~359.99	0.00	\bigcirc	869.

Function code	Name	Description	Setting range	Default	Modify	SN
	pulse	motor pole position. Setting range: 0.00-359.99				
F29.10	Initial angle of the pole	Relative electric angle of encoder position and motor pole position. Setting range: 0.00-359.99	0~359.99	0.00	\bigcirc	870.
F29.11	Autotuning of initial angle of pole	0-3 1: Rotary autotuning (DC brake) 2: Static autotuning (suitable for resolver-type encoder, sin/cos with CD signal feedback) 3: Rotary autotuning (initial angle identification)	0~3	0	\bigcirc	871.
F29.12	Speed measurement optimization selection	0: No optimization 1: Optimization mode 1 2: Optimization mode 2	0~2	1	\bigcirc	872.
F29.13	CD signal zero offset gain	0-65535	0~65535	0	\bigcirc	873.
F29.14	Encoder type selection	Ones place: Incremental encoder 0 : without UVW 1: with UVW Tens place: Sin/Cos encoder 0 : without CD signal 1: with $C D$ signal	0x00~0x11	0x00	\bigcirc	874.
F29.15	Speed measurement mode	0: PG card 1: local; realized by HI1 and HI2; supports incremental 24 V encoder only	0~1	0	\bigcirc	875.
F29.16	Frequency division coefficient	$0-255$ When the function code is set to 0 or 1 , frequency division of $1: 1$ is implemented.	0~255	0	\bigcirc	876.
F29.17	Pulse filter handling selection	$0 \times 0000-0 \times F F F F$ Bit0: Enable/disable encoder input filter 0: No filter 1: Filter Bit1: Encoder signal filter mode (set Bit0 or Bit2 to 1) 0: Self-adaptive filter 1: Use F29.18 filter parameters	0~fff	0x0033	-	877.

Function code	Name	Description	Setting range	Default	Modify	SN
		Bit2: Enable/disable encoder frequency-division output filter 0 : No filter 1: Filter Bit3: Reserved Bit4: Enable/disable pulse reference filter 0 : No filter 1: Filter Bit5: Pulse reference filter mode (valid when Bit4 is set to 1) 0: Self-adaptive filter 1: Use F29.19 filter parameters Bit6: Frequency-divided output source setting 0: Encoder signals 1: Pulse reference signals Bits7-15: Reserved				
F29.18	Encoder pulse filter width	0-63 The filtering time is $\underline{F 29.18 *} 0.25$ us. The value 0 or 1 indicates $0.25 \mu \mathrm{~s}$.	0~63	2	\bigcirc	878.
F29.19	Pulse reference filter width	$0-63$ The filtering time is $\underline{F 29.19 *} 0.25$ us. The value 0 or 1 indicates $0.25 \mu \mathrm{~s}$.	0~63	2	\bigcirc	879.
F29.20	Pulse number of pulse reference	0-65535	0~65535	1024	\bigcirc	880.
F29.21	Enable angle compensation of SM 2	0-1	0~1	0	-	881.
F29.22	Switchover frequency threshold of speed measurement mode	$0-630.00 \mathrm{~Hz}$	0~630.00	1.00 Hz	\bigcirc	882.
F29.23	SM 2 angle compensation coefficient	-200.0-200.0\%	$\begin{aligned} & -200.0 \sim 200 \\ & .0 \end{aligned}$	100.0\%	\bigcirc	883.
F29.24	SM 2 pole pairs of initial angle auto tune	0-65535	0~128	2	\bigcirc	884.

Function code	Name	Description	Setting range	Default	Modify	SN
F30 group-Vector control of motor 2						
F30.00	Speed-loop proportional gain 1	Setting range of F30.00: 0.0-200.0 Setting range of F30.01: 0.000-10.000s Setting range of F30.02: $0.00 \mathrm{~Hz}-\mathrm{F} 30.05$ Setting range of F30.03: 0.0-200.0 Setting range of F30.04: 0.000-10.000s Setting range of F30.05: F30.02-F00.07 (Max. output frequency)	0~200.0	20.0	\bigcirc	885.
F30.01	Speed-loop integral time 1		$\begin{aligned} & 0.000 \sim 10.0 \\ & 00 \end{aligned}$	0.200s	\bigcirc	886.
F30.02	Low-point frequency for switching		$\begin{aligned} & 0.00 \sim \text { F30.0 } \\ & 5 \end{aligned}$	5.00 Hz	\bigcirc	887.
F30.03	Speed-loop proportional gain 2		0~200.0	20.0	\bigcirc	888.
F30.04	Speed-loop integral time 2		$\begin{aligned} & 0.000 \sim 10.0 \\ & 00 \end{aligned}$	0.200s	\bigcirc	889.
F30.05	High-point frequency for switching		$\begin{aligned} & \text { F30.02~F0 } \\ & 0.07 \end{aligned}$	10.00 Hz	-	890.
F30.06	Electromotive slip compensation coefficient of vector control	Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of the system. Adjusting the parameter properly can control the speed steady-state error. Setting range: 50-200\%	50~200	100\%	-	891.
F30.07	Power-generation slip compensation coefficient of vector control		50~200	100\%	\bigcirc	892.
F30.08	Speed-loop output filter	$0-8$ (corresponding to $0-2^{\wedge} 8 / 10 \mathrm{~ms}$)	0~8	0	\bigcirc	893.
F30.09	Current-loop proportional coefficient P	Setting range: 0-65535	0~65535	1000	\bigcirc	894.
F30.10	Current-loop integral coefficient I		0~65535	1000	\bigcirc	895.
F30.11	Speed-loop differential gain	0.00-10.00s	0.00~10.00	0.00s	\bigcirc	896.

Function code	Name	Description	Setting range	Default	Modify	SN
F30.12	High-frequency current-loop proportional coefficient	Setting range of F30.12: 0-65535Setting range of F30.13: 0-65535Setting range of F30.14: $0.0-100.0 \%$ (of themax. frequency)	0~65535	1000	-	897.
F30.13	High-frequency current-loop integral coefficient		0~65535	1000	-	898.
F30.14	Current-loop high-frequency switching threshold		0~100.0\%	100.0\%	\bigcirc	899.

Function code	Name	Description	Setting range	Default	Modify	SN

F31 group-V/F control for AM 2

F31.00	V/F curve setting	0: Straight-line V/F curve, applicable to constant torque loads 1: Multi-point V/F curve 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 1.7) 4: Torque-down V/F curve (power of 2.0) 5: Customized V/F (V/F separation);	0~5	0	\bigcirc	900.
F31.01	Torque boost	Setting range of F31.01: 0.0\%: (automatic);	0.0~10.0	0.0\%	\bigcirc	901.
F31.02	Torque boost cut-off		$0.0 \sim 50.0$	20.0\%	©	902.
F31.03	V/F frequency point 1	Setting range of F31.03: $0.00 \mathrm{~Hz}-\mathrm{F} 31.05$ Setting range of $\mathrm{F} 31.04: 0.0 \%-110.0 \%$ (of the	$\begin{aligned} & 0.00 \sim \text { F31.0 } \\ & 5 \end{aligned}$	0.00Hz	\bigcirc	903.
F31.04	V/F voltage point 1	Setting range of F31.05: F31.03-F31.07	0.0~110.0	00.0\%	\bigcirc	904.
F31.05	V/F frequency point 2	Setting range of F31.06: 0.0\%-110.0\% (of the rated voltage of motor 1)	$\begin{array}{\|l} \text { F31.03~ } \\ \text { F31.07 } \end{array}$	0.00 Hz	\bigcirc	905.
F31.06	V/F voltage point 2	(rated frequency of AM 1) or F31.05-F28.16	0.0~110.0	0.0\%	\bigcirc	906.
F31.07	V/F frequency point	(rated frequency of SM 1) Setting range of F31.08: 0.0\%-110.0\% (of the	$\begin{aligned} & \text { F31.05~ } \\ & \text { F31.09 } \end{aligned}$	0.00Hz	\bigcirc	907.

Function code	Name	Description	Setting range	Default	Modify	SN
	3	motor rated voltage of motor 1)				
F31.08	V/F voltage point 3		0.0~110.0	00.0\%	\bigcirc	908.
F31.09	V/F frequency point 4		F31.05~Mo tor 2 rated frequency	0.00 Hz	-	909.
F31.10	V/F voltage point 4		0.0~110.0	00.0\%	\bigcirc	910.
F31.11	Low-frequency oscillation control factor 1	Setting range of F31.11: 0-100 Setting range of : 0-100 Setting range of $\mathrm{F} 31.13: 0.00 \mathrm{~Hz}-\mathrm{F00.07}$ (Max. output frequency)	0~100	10	-	911.
F31.12	High-frequency oscillation control factor 2		0~100	10	-	912.
F31.13	Oscillation control threshold		$\begin{aligned} & 0.00 \mathrm{~Hz} \sim \mathrm{FO} \\ & 0.07 \end{aligned}$	30.00 Hz	\bigcirc	913.
F31.14	V/F slip compensation gain	Setting range: 0.0-200.0\%	0.0~200.0	0.0\%	\bigcirc	914.
F31.15	Enabling IF mode for AM 2	0: Disable 1: Enable	0~1	0	\bigcirc	915.
F31.16	Current setting in IF mode for AM 2	When IF control is adopted for AM 1, the function code is used to set the output current. The value is a percentage in relative to the rated current of the motor. Setting range: 0.0-200.0\%	$\begin{aligned} & 0.0 \sim 200.0 \\ & \% \end{aligned}$	120.0\%	-	916.
F31.17	Proportional coefficient in IF mode for AM 2	When IF control is adopted for AM 1, the function code is used to set the proportional coefficient of the output current closed-loop control. Setting range: 0-5000	0~5000	350	\bigcirc	917.
F31.18	Integral coefficient in IF mode for AM 2	When IF control is adopted for AM 1, the function code is used to set the integral coefficient of the output current closed-loop control. Setting range: 0-5000	0~5000	150	\bigcirc	918.
F31.19	Frequency	0.00-F31.20	0.00~F31.2	10.00 Hz	\bigcirc	919.

Function code	Name	Description	Setting range	Default	Modify	SN
	Shreshold for switching off IF mode for AM 2		0			
F31.20	End frequency point for switching off IF mode for AM 2	F31.19-F00.07	F31.19~F0 0.07	25.00	\circ	920.

9 Troubleshooting

7.1 What this chapter contains

The chapter instructs you how to reset faults and check faults history. A complete list of alarms and fault information as well as possible causes and corrective measures are presented in this chapter.

公	\diamond Only trained and qualified professionals are allowed to carry out the work described in this chapter. Operations should be carried out according to the instructions presented in Safety precautions.

7.2 Indications of alarms and faults

The fault is indicated by indicators (Refer to " 5.4 Keypad operation "). When ERR indicator is on, the alarm or fault code displayed in the keypad indicates the VFD is in exception state. This chapter covers most of the alarms and faults, and their possible causes and corrective measures, if users cannot figure out the alarm or fault causes, contact local FGI office.

7.3 Fault reset

You can reset the VFD through the \boldsymbol{D} key on the keypad, digital inputs, or by cutting off the VFD power. After faults are removed, the motor can be start again.

7.4 Fault history

F13.11-F13.42 record the six latest fault types; F13.17-F13.24, F13.25-F13.32, and F13.33-F13.40 record the running data of the VFD when the latest three faults occurred.

7.5 VFD faults and solutions

When a fault occurred, handle the fault as follows.

1. When a VFD fault occurred, confirm whether keypad display is improper? If yes, contact FGI;
2. If keypad works properly, check the function codes in F13 group to confirm the corresponding fault record parameters, and determine the real state when current fault occurred through parameters;
3. Check the table below to Refer to whether corresponding exception states exist based on the corresponding corrective measures;
4. Rule out the faults or ask for help from professionals;
5. After confirming faults are removed, reset the fault and start running.

7.5.1 Details of faults and solutions

Fault code	Fault type	Possible cause	Solution
Err-01	Inverter unit Phase-U protection	Acceleration is too fast; IGBT module is damaged; Misacts caused by interference;	Increase acceleration time; Replace the power unit; Check drive wires;

Fault code	Fault type	Possible cause	Solution
Err-02	Inverter unit Phase-V protection	drive wires are poorly connected ; To-ground short circuit occurs	Check whether there is strong interference surrounds the peripheral equipment
Err-03	Inverter unit Phase-W protection		
Err-04	Over-voltage during acceleration	Exception occurred to input voltage; Large energy feedback; Lack of braking units; Dynamic brake is not enabled	Check input power; Check whether load deceleration time is too short; or the motor starts during rotating; Install dynamic braking units; Check the setup of related function codes
Err-05	Over-voltage during deceleration		
Err-06	Over-voltage during constant speed running		
Err-07	Over-current during acceleration	Acceleration is too fast; Grid voltage is too low; Inverter power is too small; Load transient or exception occurred; To-ground short circuit or output phase loss occur; Strong external interference sources; Overvoltage stall protection is not enabled	Increase acceleration /deceleration time; Check input power; Select the VFD with larger power; Check if the load is short circuited (to-ground short circuit or line-to-line short circuit) or the rotation is not smooth; Check the output wiring; Check if there is strong interference; Check the setup of related function codes.
Err-08	Over-current during deceleration		
Err-09	Over-current during constant speed running		
Err-10	Bus undervoltage fault	Grid voltage is too low; Overvoltage stall protection is not enabled	Check grid input power; Check the setup of related function codes
Err-11	Motor overload	Grid voltage is too low; Rated motor current is set improperly; Motor stall or load jumps violently	Check grid voltage; Reset rated motor current; Check the load and adjust torque boost
Err-12	Inverter overload	Acceleration is too fast;	Increase acceleration time;

Fault code	Fault type	Possible cause	Solution
		The motor in rotating is restarted; Grid voltage is too low; Load is too large; Power is too small;	Avoid restart after stop; Check grid voltage; Select the VFD with larger power; Select proper motor
Err-13	Phase loss on input side	Phase loss or violent fluctuation occurred to R, S and T input	Check the input power; Check installation wiring
Err-14	Phase loss on output side	Phase loss occurred to U, V, W output (or the three phases of motor is asymmetrical)	Check the output wiring; Check the motor and cable
Err-15	Overheat of rectifier module	Air duct is blocked or fan is damaged;	Ventilate the air duct or replace
Err-16	Overheat of VFD module	Ambient temperature is too high; Long-time overload running	Lower the ambient temperature
Err-17	External fault	DI external fault input terminal acts	Check external device input
Err-18	Modbus communication fault	Baud rate is set improperly; Communication line fault; Communication address error; Communication suffers from strong interference	Set proper baud rate; Check the wiring of communication interfaces; Set proper communication address; Replace or change the wiring to enhance anti-interference capacity
Err-19	Current detection fault	Poor contact of the connector of control board; Hall component is damaged; Exception occurred to amplification circuit	Check the connector and re-plug; Replace the hall component; Replace the main control board
Err-20	Motor autotuning fault	Motor capacity does not match with the VFD capacity, this fault may occur easily if the difference between them is exceeds five power classes; Motor parameter is set improperly; The parameters gained from autotuning deviate sharply from	Change the VFD model, or adopt V/F mode for control; Set proper motor type and nameplate parameters; Empty the motor load and carry out autotuning again; Check motor wiring and parameter setup;

Fault code	Fault type	Possible cause	Solution
		the standard parameters; Autotuning timeout	Check whether upper limit frequency is larger than $2 / 3$ of the rated frequency
Err-21	EEPROM fault	R/W error occurred to the control parameters; EEPROM is damaged	Press STOP/RST to reset; Replace the main control board
Err-22	PID feedback offline fault	PID feedback offline; PID feedback source disappears;	Check PID feedback signal wires; Check PID feedback source
Err-23	Braking unit fault	Brake circuit fault or brake tube is damaged; The resistance of external braking resistor is too small	Check the braking unit, replace with new brake tubes; Increase brake resistance
Err-24	Running time is up	The actual running time of the VFD is larger than the set running time	Ask help from the supplier, adjust the set running time
Err-25	Electronic overload fault	The VFD releases overload pre-alarm based on the set value	Check the load and overload pre-alarm threshold
Err-26	Keypad communication fault	The keypad wire is poorly contacted or disconnected; The keypad wire is too long and suffers strong interference; Circuit fault occurred to the keypad or communication part of the main board	Check the keypad wires to confirm whether fault exists; Check the surroundings to rule out interference source; Replace the hardware and ask for maintenance service
Err-27	Parameter upload error	The keypad wire is poorly contacted or disconnected; The keypad wire is too long and suffers strong interference; Circuit fault occurred to the keypad or communication part of the main board	Check the surroundings to rule out interference source; Replace the hardware and ask for maintenance service; Replace the hardware and ask for maintenance service
Err-28	Parameter download error	The keypad wire is poorly contacted or disconnected; The keypad wire is too long and suffers strong interference; Data storage error occurred to the	Check the surroundings to rule out interference source; Replace the hardware and ask for maintenance service; Re-backup keypad data

Fault code	Fault type	Possible cause	Solution
		keypad	
Err-32	To-ground short circuit fault 1	Inverter output is short connected to the ground; Current detection circuit is faulty; Actual motor power setup deviates sharply from the VFD power	Check whether motor wiring is proper; Replace the hall component; Replace the main control board; Reset the motor parameters properly
Err-33	To-ground short circuit fault 1	Inverter output is short connected to ground; Current detection circuit is faulty; Actual motor power setup deviates sharply from the VFD power	Check whether motor wiring is proper; Replace the hall component; Replace the main control board; Reset the motor parameters properly
Err-34	Speed deviation fault	Load is too heavy, or stall occurred	Check the load to ensure it is proper, increase the detection time; Check whether control parameters are set properly
Err-35	Maladjustment fault	Control parameters of synchronous motor is set improperly; The parameter gained from autotuning is inaccurate; The VFD is not connected to motor	Check the load to ensure it is proper, Check whether load is proper; Check whether control parameters are set correctly; Increase maladjustment detection time
Err-36	Electronic underload fault	The VFD performs underload pre-alarm based on the set value	Check the load and overload pre-alarm threshold
Err-59	Motor over-temperature fault	Motor over-temperature input terminal is valid; Exception occurred to t temperature detection Exception occurred to resistor; Long-time overload running or exception occurred	Check the wiring of motor over-temperature input terminal (terminal function 57); Check whether temperature sensor is proper; Check the motor and perform maintenance on the motor
Err-55	Repetitive extension card type	The two inserted extension cards are of the same type	Users should not insert two cards with the same type; check the type of extension card, and

Fault code	Fault type	Possible cause	Solution
			remove one card after power down
Err-60	Failed to identify the extension card in card slot 1	There is data transmission in interfaces of card slot 1, however, it cannot read the card type	Confirm whether the extension card inserted can be supported; Stabilize the extension card interfaces after power down, and confirm whether fault still occurs at next power-on; Check whether the insertion port is damaged, if yes, replace the insertion port after power down

7.5.2 Other states

Displayed code	State type	Possible cause	Solution
PLoSS	System power failure	The system is powered off or the bus voltage is too low.	Check the grid conditions.

7.6 Analysis on common faults

7.6.1 Motor fails to work

7.6.2 Motor vibrates

7.6.3 Overvoltage

7.6.4 Undervoltage

7.6.5 Unusual heating of motor

7.6.6 VFD overheating

7.6.7 Motor stalls during ACC

7.6.8 Overcurrent

7.7 Countermeasures on common interference

7.7.1 Interference on meter switches and sensors

Interference phenomenon

Pressure, temperature, displacement, and other signals of a sensor are collected and displayed by a human-machine interaction device. The values are incorrectly displayed as follows after the VFD is
started:

1. The upper or lower limit is wrongly displayed, for example, 999 or -999.
2. The display of values jumps (usually occurring on pressure transmitters).
3. The display of values is stable, but there is a large deviation, for example, the temperature is dozens of degrees higher than the common temperature (usually occurring on thermocouples).
4. A signal collected by a sensor is not displayed but functions as a drive system running feedback signal. For example, the VFD is expected to decelerate when the upper pressure limit of the compressor is reached, but in actual running, it starts to decelerate before the upper pressure limit is reached.
5. After the VFD is started, the display of all kinds of meters (such as frequency meter and current meter) that are connected to the analog output (AO) terminal of the VFD is severely affected, displaying the values incorrectly.
6. Proximity switches are used. After the VFD is started, the indicator of a proximity switch flickers, and the output level flips.

Solution

1. Check and ensure that the feedback cable of the sensor is 20 cm or farther away from the motor cable.
2. Check and ensure that the ground wire of the motor is connected to the PE terminal of the VFD (if the ground wire of the motor has been connected to the ground block, you need to use a multimeter to measure and ensure that the resistance between the ground block and PE terminal is lower than 1.5Ω).
3. Try to add a safety capacitor of $0.1 \mu \mathrm{~F}$ to the signal end of the feedback signal terminal of the sensor.
4. Try to add a safety capacitor of $0.1 \mu \mathrm{~F}$ to the power end of the sensor meter (pay attention to the voltage of the power supply and the voltage endurance of the capacitor).
5. For interference on meters connected to the AO terminal of a VFD, if AO uses current signals of 0 to 20 mA , add a capacitor of $0.47 \mu \mathrm{~F}$ between the AO and GND terminals; and if AO uses voltage signals of 0 to 10 V , add a capacitor of $0.1 \mu \mathrm{~F}$ between the AO and GND terminals.

Note:

- When a decoupling capacitor is required, add it to the terminal of the device connected to the sensor. For example, if a thermocouple is to transmit signals of 0 to 20 mA to a temperature meter, the capacitor needs to be added on the terminal of the temperature meter; if an electronic ruler is to transmit signals of 0 to 30 V to a PLC signal terminal, the capacitor needs to be added on the terminal of the PLC.
- If a large number of meters or sensors are disturbed. It is recommended that you configure an
external C2 filter on the input power end of the VFD. For models of filters, Refer to the filter model selection section D.7.2 Filter model selection.

7.7.2 Interference on RS485 communication

Interference phenomenon

The interference described in this section on 485 communication mainly includes communication delay, synchronization failure, occasional power-off, or complete power-off that occurs after the VFD is started.

If the communication cannot be implemented properly, regardless of whether the VFD is running, the exception is not necessarily caused by interference. You can find out the causes as follows:

1. Check whether the 485 communication bus is disconnected or in poor contact.
2. Check whether the two ends of line A or B are connected reversely.
3. Check whether the communication protocol (such as the baud rate, data bits, and check bit) of the VFD is consistent with that of the upper computer.

If you are sure that communication exceptions are caused by interference, you can resolve the problem through the following measures:

1. Simple inspection.
2. Arrange the communication cables and motor cables in different cable trays.
3. In multi-VFD application scenarios, adopt the chrysanthemum connection mode to connect the communication cables between VFDs, which can improve the anti-interference capability.
4. In multi-VFD application scenarios, check and ensure that the driving capacity of the master is sufficient.
5. In the connection of multiple VFDs, you need to configure one 120Ω terminal resistor on each end.

Solution

1. Check and ensure that the ground wire of the motor is connected to the PE terminal of the VFD (if the ground wire of the motor has been connected to the ground block, you need to use a multimeter to measure and ensure that the resistance between the ground block and PE terminal is lower than 1.5Ω).
2. Do not connect the VFD and motor to the same ground terminal as the upper computer. It is recommended that you connect the VFD and motor to the power ground, and connect the upper computer separately to a ground stud.
3. Try to short the signal reference ground terminal (GND) of the VFD with that of the upper computer controller to ensure that ground potential of the communication chip on the control board of the VFD is consistent with that of the communication chip of the upper computer.
4. Try to short GND of the VFD to its ground terminal (PE).

Try to add a safety capacitor of $0.1 \mu \mathrm{~F}$ on the power terminal of the upper computer (PLC, HMI, and touch screen). During this process, pay attention to the voltage of the power supply and the voltage endurance capability of the capacitor. Alternatively, you can use a magnet ring (Fe-based nanocrystalline magnet rings are recommended). Put the power L / N line or $+/$ - line of the upper computer through the magnet ring in the same direction and wind 8 coils around the magnet ring.

7.7.3 Stop failure and indicator shimmering due to motor cable coupling Interference phenomenon

1. Stop failure

In a VFD system where an DI terminal is used to control the start and stop, the motor cable and control cable are arranged in the same cable tray. After the system is started properly, the DI terminal cannot be used to stop the VFD.
2. Indicator shimmering

After a VFD is started, the relay indicator, power distribution box indicator, PLC indicator, and indication buzzer shimmers, blinks, or emits unusual sounds unexpectedly.

Solution

1. Check and ensure that the exception signal cable is arranged 20 cm or farther away from the motor cable.
2. Add a safety capacitor of $0.1 \mu \mathrm{~F}$ between the digital input terminal (S) and the COM terminal.
3. Connect the digital input terminal (DI) that controls the start and stop to other idle digital input terminals in parallel. For example, if DI1 is used to control the start and stop and DI4 is idle, you can try to connect DI1 to DI4 in parallel.

Note: If the controller (such as PLC) in the system controls more than 5 VFDs at the same time through digital input terminals (DI), this scheme is not applicable.

7.7.4 Leakage current and interference on RCD

The VFD outputs high-frequency PWM voltage to drive motors. In this process, the distributed capacitance between the internal IGBT of the VFD and the heat sink and that between the stator and rotor of a motor may inevitably cause the VFD to generate high-frequency leakage current to the ground. A residual current operated protective device (RCD) is used to detect the power-frequency leakage current when a grounding fault occurs on a circuit. The application of the VFD may cause misoperation of a RCD.

1. Rules for selecting RCDs
(1) VFD systems are special. In these systems, it is required that the rated residual current of common RCDs at all levels is larger than 200 mA , and the VFDs are grounded reliably.
(2) For RCDs, the time limit of an action needs to be longer than that of a next action, and the time
difference between two actions need to be longer than 20 ms . For example, $1 \mathrm{~s}, 0.5 \mathrm{~s}$, and 0.2 s .
(3) For circuits in VFD systems, electromagnetic RCDs are recommended. Electromagnetic RCDs have strong anti-interference capability, and thus can prevent the impact of high-frequency leakage current.

Electronic RCD	Electromagnetic RCD
	Requiring highly sensitive, accurate, and stable zero-phase sequence current
Low cost, high sensitivity, small in volume,	transformer, using permalloy susceptible to voltage fluctuation of the grid and ambient temperature, weak high-permeability materials, complex process, anti-interference capability
	high cost, not susceptible to voltage fluctuation of the power supply and ambient temperature, strong anti- interference capability

2. Solution to RCD misoperation (handling the VFD)
3. Try to remove the jumper cap at "EMC" on the middle casing of the VFD.
4. Try to reduce the carrier frequency to $1.5 \mathrm{kHz}(\underline{\mathrm{F} 00.12=1.5)}$.
5. Try to modify the modulation mode to "3PH modulation and 2PH modulation" (F07.00=0000).
6. Solution to RCD misoperation (handling the system power distribution)
(1) Check and ensure that the power cable is not soaking in water.
(2) Check and ensure that the cables are not damaged or spliced.
(3) Check and ensure that no secondary grounding is performed on the neutral wire.
(4) Check and ensure that the main power cable terminal is in good contact with the air switch or contactor (all screws are tightened).
(5) Check 1PH powered devices, and ensure that no earth lines are used as neutral wires by these devices.

Do not use shielded cables as VFD power cables and motor cables.

7.7.5 Live device chassis

After the VFD is started, there is sensible voltage on the chassis, and you may feel an electric shock when touching the chassis. The chassis, however, is not live (or the voltage is far lower than the human safety voltage) when the VFD is powered on but not running.

Solution

1. If there is power distribution grounding or ground stud on the site, ground the cabinet chassis of the drive system through the power ground or stud.

If there is no grounding on the site, you need to connect the motor chassis to the ground terminal PE of the VFD, and ensure that the jumper at "EMC " on the middle casing of the VFD is shorted.

10 Quality commitment

8.1 Warranty period

Standard warranty: 18 months (based on product serial number)

During the warranty period, the repair or replacement of parts will not affect the overall warranty period of the original product. If the warranty period of the original product is less than 3 months, the repaired or replaced parts will still have the warranty period of 3 months.

8.2 After sales service instructions

Thank you very much for choosing FGI products. Fd300 series adopts the most advanced transmission technology and is manufactured under the strict and advanced production management control. In case of product failure, FGI Science \& Technology Co., Ltd. and its office will wholeheartedly provide you with timely and high-quality services. Welcome to call the 365X24 hour national unified service hotline: 400-600-3199.

8.3 Services

We promise that, our company (hereinafter referred to as "the manufacturer") conducts free maintenance and repairing to the product that has any fault or damage under the normal operation conditions to the customers from the purchase date.

1. This product is guaranteed free of charge for 18 months from the date of purchase from the manufacturer (except the non-standard machine products).
2. This product has paid lifelong service from the date of purchase from the manufacturer.
3. Even within 18 months, maintenance should also be charged in case of the following situations:
(1) Damages incurred to the inverter due to mis-operations which are not in compliance with "Operation Manual";
(2) Damages incurred to the inverter due to the unauthorized repairing and reconstruction;
(3) Damage incurred to the inverter due to mis-operations which are not in the standard application
range;
(4) Abnormal aging or damage incurred to the inverter due to bad usage environment;
(5) Damage incurred to the inverter due to earthquake, fire, flood, thunder, abnormal voltage and other damage caused by the force majeure;
(6) Damage or lost incurred to the inverter due to improper transportation (the customer can select the transportation, but our company can assist for the shipment procedures).
4. Free maintain and repairing won, t be given under the following circumstance:
(1) The brand, trademark, serial number and name plate designated in the product have been changed or destroyed and cannot be read;
(2) The customer did not pay at the Purchase and Sales Contract signed by both parties;
(3) The customer concealed the mis-operation in installation, configuration, operation, maintenance, and other procedures.

8.4 Responsibilities

No matter from the perspective of contract, warranty period, negligence, civil tort, strict liability or any other point of view, FGI and its suppliers and distributors shall not be responsible for the following special, indirect and secondary losses caused by the use of equipment. This includes but is not limited to the loss of profit and income, the loss of the use of supplied equipment and related equipment, the cost of funds, the cost of substitute equipment, tool fees and service fees, the cost of downtime, delays, and the loss of the buyer's customers or any third party. In addition, unless the user can provide strong evidence, FGI and its suppliers will not be responsible for some allegations, such as problems caused using unqualified raw materials, wrong design, or non-standard production.

If you have any questions about FGI VFDs, please contact FGI company or its office. Technical data, information and specifications are the latest materials at the time of publication. FGI reserves the right to make changes without prior notice.

11 Maintenance

9.1 What this chapter contains

This chapter describes how to carry out preventive maintenance on the VFD.

9.2 Periodical inspection

Only little maintenance is required when the VFD is installed in an environment that meets the requirements. The following table describes the routine maintenance periods recommended by FGI.

Subject		Item	Method	Criterion
Ambient environment		Check the temperature, and humidity, and whether there is vibration, dust, gas, oil spray, and water droplets in the environment.	Visual inspection, and use instruments for measurement.	The requirements stated in this manual are met.
		Check whether there are foreign matters, such as tools, or dangerous substances placed nearby.	Visual inspection	There are no tools or dangerous substances placed nearby.
Voltage		Check the voltage of the main circuit and control circuit.	Use multimeters or other instruments for measurement.	The requirements stated in this manual are met.
Keypad		Check the display of information.	Visual inspection	The characters are displayed properly.
		Check whether characters are not completely displayed.	Visual inspection	The requirements stated in this manual are met
Main circuit	Common	Check whether the bolts loose or come off.	Screw them up.	No exception occurs.
		Check whether the machine is deformed, cracked, or damaged, or their color changes due to overheating and aging.	Visual inspection	No exception occurs.
		Check whether there are stains and dust attached.	Visual inspection	No exception occurs. Note: Discoloration of copper bars does not mean that they

Maintenance

Maintenance

Subject		Item	Method	Criterion
	contactor and relay	vibration sounds in the workshop.		occurs.
		Check whether the contacts are in good contact.	Visual inspection	No exception occurs.
Control circuit	Control PCB, connector	Check whether the screws and connectors loose.	Screw them up.	No exception occurs.
		Check whether there is unusual smell or discoloration.	Olfactory and visual inspection	No exception occurs.
		Check whether there are cracks, damage, deformation, or rust.	Visual inspection	No exception occurs.
		Check whether there is electrolyte leakage or deformation.	Visual inspection, and determine the service life based on the maintenance information.	No exception occurs.
Cooling system	Cooling fan	Check whether there are unusual sounds or vibration.	Auditory and visual inspection, and turn the fan blades with your hand.	The rotation is smooth.
		Check whether the bolts loose.	Screw them up.	No exception occurs.
		Check whether there is discoloration caused due to overheat.	Visual inspection, and determine the service life based on the maintenance information.	No exception occurs.
	Ventilation duct	Check whether there are foreign matters blocking or attached to the cooling fan, air inlets, or air outlets.	Visual inspection	No exception occurs.

For more details about maintenance, contact the local FGI office, or visit our website https://www.fgi-energyrouter.com/, and choose Service and Support > Online Service.

9.3 Cooling fan

The service life of the cooling fan of the VFD is more than 25,000 hours. The actual service life of the
cooling fan is related to the use of the VFD and the temperature in the ambient environment.
You can view the running duration of the VFD through F10.21 (Accumulated running time).
The increase of the bearing noise indicates a fan fault. If the VFD is applied in a key position, replace the fan once the fan starts to generate unusual noise. You can purchase spare parts of fans from FGI.

Cooling fan replacement

Read the safety precautions carefully and follow the instructions to perform operations. Otherwise, physical injuries or damage to the device may be caused.

1. Stop the device, disconnect the AC power supply, and wait for a time no shorter than the waiting time designated on the VFD.
2. Open the cable clamp to loosen the fan cable
3. Remove the fan cable.
4. Remove the fan with a screwdriver.
5. Install a new fan in the VFD in the reverse steps. Assemble the VFD. Ensure that the air direction of the fan is consistent with that of the VFD.

9.4 Capacitor

9.4.1 Capacitor reforming

If the VFD has been left unused for a long time, you need to follow the instructions to reform the DC bus capacitor before using it. The storage time is calculated from the date the VFD is delivered.

Storage time	Operation instruction
Less than 1 year	No charging operation is required.
1 to 2 years	The VFD needs to be powered on for 1 hour before the first running command.
2 to 3 years	Use a voltage controlled power supply to charge the VFD: Charge the VFD at 25\% of the rated voltage for 30 minutes, and then charge it at 50\% of the rated voltage for 30 minutes, at 75% for another 30 minutes, and finally charge it at 100\% of the rated voltage for 30 minutes.
More than 3 years	Use a voltage controlled power supply to charge the VFD: Charge the VFD at 25\% of the rated voltage for 2 hours, and then charge it at 50\% of the rated voltage for 2 hours, at 75\% for another 2 hours, and finally charge it at 100\% of the rated voltage for 2 hours.

The method for using a voltage controlled power supply to charge the VFD is described as follows: The selection of a voltage controlled power supply depends on the power supply of the VFD. For

VFDs with an incoming voltage of $1 \mathrm{PH} / 3 \mathrm{PH} 230 \mathrm{VAC}$, you can use a $230 \mathrm{VAC} / 2 \mathrm{~A}$ voltage regulator. Both 1PH and 3PH VFDs can be charged with a 1PH voltage controlled power supply (connect $L+$ to R , and N to S or T). All the DC bus capacitors share one rectifier, and therefore they are all charged.

For VFDs of a high voltage class, ensure that the voltage requirement (for example, 380 V) is met during charging. Capacitor changing requires little current, and therefore you can use a small-capacity power supply (2 A is sufficient).
The method for using a resistor (incandescent lamp) to charge the drive is described as follows:
If you directly connect the drive device to a power supply to charge the DC bus capacitor, it needs to be charged for a minimum of 60 minutes. The charging operation must be performed at a normal indoor temperature without load, and you must connect a resistor in series mode in the 3PH circuit of the power supply.

For a 380 V drive device, use a resistor of $1 \mathrm{k} \Omega / 100 \mathrm{~W}$. If the voltage of the power supply is no higher than 380 V , you can also use an incandescent lamp of 100 W . If an incandescent lamp is used, it may go off or the light may become very weak.

Figure 9.3 Charging circuit example of driving devices

9.4.2 Electrolytic capacitor replacement

The electrolytic capacitor of the VFD must be replaced if it has been used for more than 35,000 hours. For details about the replacement, contact the local FGI office.

9.5 Power cable

1. Stop the VFD, disconnect the power supply, and wait for a time no shorter than the waiting time designated on the VFD.
2. Check the connection of the power cables. Ensure that they are firmly connected.
3. Power on the VFD.

12 Communication

10.1 What this chapter contains

This chapter describes the communication protocols supported by the VFD.
The VFD provides RS485 communication interfaces and adopts the master/slave communication based on the international standard Modbus communication protocol. You can implement centralized control (setting commands for controlling the VFD, modifying the running frequency and related function parameters, and monitoring the running status and fault information of the VFD) through PC/PLC, upper control computers, or other devices to meet specific application requirements.

10.2 Modbus protocol introduction

Modbus is a software protocol, a common language used in electronic controllers. By using this protocol, a controller can communicate with other devices through transmission lines. It is a general industrial standard. With this standard, control devices produced by different manufacturers can be connected to form an industrial network and be monitored in a centralized way.

The Modbus protocol provides two transmission modes, namely American Standard Code for Information Interchange (ASCII) and Remote Terminal Unit (RTU). On one Modbus network, all the devices must be consistent in transmission modes, baud rates, data bits, check bits, stop bits, and other basic parameters.

A Modbus network is a control network with one master and multiple slaves, that is, on one Modbus network, there is only one device serving as the master, and other devices are the slaves. The master can communicate with one slave or all the slaves by sending broadcast messages. For separate access commands, a slave needs to return a response. For broadcast messages, slaves do not need to return responses.

10.3 Application

The VFD uses the Modbus RTU mode and communicates through RS485 interfaces.

10.3.1 RS485

RS485 interfaces work in half-duplex mode and send data signals in the differential transmission way, which is also referred to as balanced transmission. An RS485 interface uses a twisted pair, in which one wire is defined as $A(+)$, and the other $B(-)$. Generally, if the positive electrical level between the transmission drives A and B ranges from +2 V to +6 V , the logic is " 1 "; and if it ranges from -2 V to -6 V , the logic is " 0 ". On the VFD terminal block, the $485+$ terminal corresponds to A , and 485 - corresponds to B.

The communication baud rate (F14.00) indicates the number of bits sent in a second, and the unit is bit/s (bps). A higher baud rate indicates faster transmission and poorer anti-interference capability. When a twisted pair of 0.56 mm (24 AWG) is used, the maximum transmission distance varies according to the baud rate, as described in the following table.

Baud rate (bps)	Max. transmission distance (meter)	Baud rate (bps)	Max. transmission distance (meter)
$2400 B P S$	1800 m	9600 BPS	800 m
$4800 B P S$	1200 m	19200 BPS	600 m

When RS485 interfaces are used for long-distance communication, it is recommended that you use shielded cables, and use the shielding layer as the ground wires.

When there are fewer devices and the transmission distance is short, the whole network works well without terminal load resistors. The performance, however, degrades as the distance increases. Therefore, it is recommended that you use a 120Ω terminal resistor when the transmission distance is long.

10.3.1.1 When one VFD is used

Figure 10.1 is the Modbus wiring diagram for the network with one VFD and PC. Generally, PCs do not provide RS485 interfaces, and therefore you need to convert an RS232 or USB interface of a PC to an RS485 interface through a converter. Then, connect end A of the RS485 interface to the 485+ port on the terminal block of the VFD, and connect end B to the 485- port. It is recommended that you use shielded twisted pairs. When an RS232-RS485 converter is used, the cable used to connect the RS232 interface of the PC and the converter cannot be longer than 15 m . Use a short cable when possible. It is recommended that you insert the converter directly into the PC. Similarly, when a USB-RS485 converter is used, use a short cable when possible.

When the wiring is completed, select the correct port (for example, COM1 to connect to the RS232-RS485 converter) for the upper computer of the PC, and keep the settings of basic parameters such as communication baud rate and data check bit consistent with those of the VFD.

Figure 10.1 RS485 wiring diagram for the network with one VFD

10.3.1.2 When multiple VFDs are used

In the network with multiple VFDs, chrysanthemum connection and star connection are commonly used.

According to the requirements of the RS485 industrial bus standards, all the devices need to be connected in chrysanthemum mode with one 120Ω terminal resistor on each end, as shown in Figure 10.2. Figure 10.3 is the simplified wiring diagram, and Figure 10.4 is the practical application diagram.

Figure 10.2 Onsite chrysanthemum connection diagram

Figure 10.3 Simplified chrysanthemum connection diagram

Figure 10.4 Practical application diagram of chrysanthemum connection
Figure 10.5 shows the start connection diagram. When this connection mode is adopted, the two devices that are farthest away from each other on the line must be connected with a terminal resistor (in this figure, the two devices are devices $1 \#$ and 15\#).

Figure 10.5 Star connection
Use shielded cables, if possible, in multi-VFD connection. The baud rates, data bit check settings, and other basic parameters of all the devices on the RS485 line must be set consistently, and addresses cannot be repeated.

10.3.2 RTU

10.3.2.1 RTU communication frame structure

When a controller is set to use the RTU communication mode on a Modbus network, every byte (8 bits) in the message includes 2 hexadecimal characters (each includes 4 bits). Compared with the ASCII mode, the RTU mode can help to send more data at the same baud rate.

Code system

- 1 start bit
- 7 or 8 data bits; the minimum valid bit is sent first. Each frame domain of 8 bits includes 2 hexadecimal characters ($0-9, A-F)$.
- 1 odd/even check bit; this bit is not provided if no check is needed.
- 1 stop bit (with check performed), or 2 bits (without check)

Error detection domain

- Cyclic redundancy check (CRC)

The following table describes the data format.
11-bit character frame (Bits 1 to 8 are data bits)

Start bit	BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	BIT7	BIT8	Check bit	Stop bit

10-bit character frame (Bits 1 to 7 are data bits)

Start bit	BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	BIT7	Check bit	Stop bit

In a character frame, only the data bits carry information. The start bit, check bit, and stop bit are used
to facilitate the transmission of the data bits to the destination device. In practical applications, you must set the data bits, parity check bits, and stop bits consistently.

In RTU mode, a new frame always must be preceded by a time gap with a minimum length of 3.5 bytes. On a network where the transmission rate is calculated based on the baud rate, the transmission time of 3.5 bytes can be easily obtained. After the idle time ends, the data domains are sent in the following sequence: slave address, operation command code, data, and CRC check character. Each byte sent in each domain includes hexadecimal characters ($0-9, A-F$). The network devices always monitor the communication bus. After receiving the first domain (address information), each network device identifies the byte. After the last byte is sent, a similar transmission interval (with a minimum length of 3.5 bytes) is used to indicate that the frame transmission ends. Then, the transmission of a new frame starts.

RTU data frame format

The information of a frame must be sent in a continuous data flow. If there is an interval greater than the transmission time of 1.5 bytes before the transmission of the entire frame is complete, the receiving device deletes the incomplete information, and mistakes the subsequent byte for the address domain of a new frame. Similarly, if the transmission interval between two frames is shorter than the transmission time of 3.5 bytes, the receiving device mistakes it for the data of the last frame. The CRC check value is incorrect due to the disorder of the frames, and thus a communication fault occurs.

The following table describes the standard structure of an RTU frame.

START (frame header)	T1-T2-T3-T4(transmission time of 3.5 bytes)
ADDR (slave address domain)	Communication address: 0-247 (in decimal system) (0 indicates the broadcast address)
CMD (function domain)	03H: read slave parameters 06H: write slave parameters
(Data domain) DATA(N-1) DATA(0)	Data of 2*N bytes, main content of the communication as well as the core of data exchanging
CRC CHK low-order bits	Detection value: CRC (16 bits)
CRC CHK high-order bits	
END (frame tail)	T1-T2-T3-T4 (transmission time of 3.5 bytes)

10.3.2.2 RTU communication frame error check modes

During the transmission of data, errors may occur due to various factors. Without check, the data
receiving device cannot identify data errors and may make a wrong response. The wrong response may cause severe problems. Therefore, the data must be checked.

The check is implemented as follows: The transmitter calculates the to-be-transmitted data based on a specific algorithm to obtain a result, adds the result to the rear of the message, and transmits them together. After receiving the message, the receiver calculates the data based on the same algorithm to obtain a result, and compares the result with that transmitted by the transmitter. If the results are the same, the message is correct. Otherwise, the message is considered wrong.

The error check of a frame includes two parts, namely, bit check on individual bytes (that is, odd/even check using the check bit in the character frame), and whole data check (CRC check).

Bit check on individual bytes (odd/even check)

You can select the bit check mode as required, or you can choose not to perform the check, which will affect the check bit setting of each byte.

Definition of even check: Before the data is transmitted, an even check bit is added to indicate whether the number of " 1 " in the to-be-transmitted data is odd or even. If it is even, the check bit is set to " 0 "; and if it is odd, the check bit is set to "1".

Definition of odd check: Before the data is transmitted, an odd check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is odd, the check bit is set to "0"; and if it is even, the check bit is set to " 1 ".

For example, the data bits to be transmitted are "11001110", including five " 1 ". If the even check is applied, the even check bit is set to " 1 "; and if the odd check is applied, the odd check bit is set to " 0 ". During the transmission of the data, the odd/even check bit is calculated and placed in the check bit of the frame. The receiving device performs the odd/even check after receiving the data. If it finds that the odd/even parity of the data is inconsistent with the preset information, it determines that a communication error occurs.

Cyclical Redundancy Check (CRC) method

A frame in the RTU format includes an error detection domain based on the CRC calculation. The CRC domain checks all the content of the frame. The CRC domain consists of two bytes, including 16 binary bits. It is calculated by the transmitter and added to the frame. The receiver calculates the CRC of the received frame, and compares the result with the value in the received CRC domain. If the two CRC values are not equal to each other, errors occur in the transmission.

During CRC, 0xFFFF is stored first, and then a process is invoked to process a minimum of 6 contiguous bytes in the frame based on the content in the current register. CRC is valid only for the 8 -bit data in each character. It is invalid for the start, end, and check bits.

During the generation of the CRC values, the "exclusive or" (XOR) operation is performed on the each 8-bit character and the content in the register. The result is placed in the bits from the low-order bit to the high-order bit, and 0 is placed in the high-order bit. Then, the low-order bit is detected. If the low-order bit is 1 , the XOR operation is performed on the current value in the register and the preset
value. If low-order bit is 0 , no operation is performed. This process is repeated 8 times. After the last bit (8th bit) is detected and processed, the XOR operation is performed on the next 8 -bit byte and the current content in the register. The final values in the register are the CRC values obtained after operations are performed on all the bytes in the frame.

The calculation adopts the international standard CRC check rule. You can refer to the related standard CRC algorithm to compile the CRC calculation program as required.

The following example is a simple CRC calculation function for your reference (using the C programming language):

```
unsigned int crc_cal_value(unsigned char*data_value,unsigned char
data_length)
{
    int i;
    unsigned int crc_value=0xffff;
    while(data_length--)
    {
        crc_value^=*data_value++;
        for(i=0;i<8;i++)
        {
            if(crc_value&0x0001)
                    crc_value=(crc_value>>1)^0xa001;
            else
                        crc_value=crc_value>>1;
        }
    }
    return(crc_value);
}
```

In the ladder logic, CKSM uses the table look-up method to calculate the CRC value according to the content in the frame. The program of this method is simple, and the calculation is fast, but the ROM space occupied is large. Use this program with caution in scenarios where there are space occupation requirements on programs.

10.4 RTU command code and communication data

10.4.1 Command code 03 H , reading N words (continuously up to 16 words)

The command code 03H is used by the master to read data from the VFD. The count of data to be read depends on the "data count" in the command. A maximum of 16 pieces of data can be read. The addresses of the read parameters must be contiguous. Each piece of data occupies 2 bytes, that is, one word. The command format is presented using the hexadecimal system (a number followed by " H " indicates a hexadecimal value). One hexadecimal value occupies one byte.

For example, starting from the data address of 0004 H , to read two contiguous pieces of data (that is,
to read content from the data addresses 0004 H and 0005 H) of the VFD whose address is 01 H , the frame structures are described in the following.

RTU master command (sent from the master to the VFD):

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
ADDR (address)	01 H
CMD (command code)	03 H
Start address high-order bit	00 H
Start address low-order bit	04 H
Data count high-order bit	00 H
Data count low-order bit	02 H
CRC low-order bit	85 H
CRC high-order bit	CAH
END	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)

"START" and "END" are "T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)", indicating that a time gap with a minimum length of 3.5 bytes must be kept before RS 485 communication is executed. The time gap is used to distinguish one message from another so that the two messages are not regarded as one message.
"ADDR" is " 01 H ", indicating that the command is sent to the VFD whose address is 01 H . The ADDR information occupies one byte.
"CMD" is " 03 H ", indicating that the command is used to read data from the VFD. The CMD information occupies one byte.
"Start address" indicates that data reading is started from this address. It occupies two bytes, with the high-order bit on the left and low-order bit on the right.
"Data count" indicates the count of data to be read (unit: word). "Start address" is "0004H" and "Data count" is 0002 H , indicating that data is to be read from the data addresses of 0004 H and 0005 H .

CRC check occupies two bytes, with the low-order bit on the left and high-order bit on the right.
RTU slave response (sent from the VFD to the master):

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
ADDR	01 H
CMD	03 H
High-order bit of data in 0004H	04 H
Low-order bit of data in 0004H	13 H
High-order bit of data in 0005H	88 H
Low-order bit of data in 0005H	00 H
CRC low-order bits	00 H

CRC high-order bits	7EH
High-order bit of data in 0004H	9DH
END	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)

The definition of the response information is described as follows:
"ADDR" is " 01 H ", indicating that the message is sent from the VFD whose address is 01 H . The ADDR information occupies one byte.
"CMD" is "03H", indicating that the message is a VFD response to the 03H command from the master for reading data. The CMD information occupies one byte.
"Number of bytes" indicates the number of bytes between a byte (not included) and the CRC byte (not included). The value " 04 " indicates that there are four bytes of data between "Number of bytes" and "CRC low-order bit", that is, "High-order bit of data in 0004H", "Low-order bit of data in 0004H", "High-order bit of data in 0005 H ", and "Low-order of data in 0005 H ".

A piece of data is two bytes, with the high-order bits on the left and low-order bit on the right. From the response, the data in 0004 H is 1388 H , and that in 0005 H is 0000 H .

CRC check occupies two bytes, with the low-order bit on the left and high-order bit on the right.

10.4.2 Command word 06 H , writing a word

This command is used by the master to write data to the VFD. One command can be used to write only one piece of data. It is used to modify the parameters and running mode of the VFD. For example, to write $5000(1388 \mathrm{H})$ to 0004 H of the VFD whose address is 02 H , the frame structures are described in the following.

RTU master command (sent from the master to the VFD):

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
ADDR	02 H
CMD	06 H
High-order bit of data writing address	00 H
Low-order bit of data writing address	04 H
Data content high-order bit	13 H
Data content low-order bit	88 H
CRC low-order bit	C5H
CRC high-order bit	6 EH
END	T1-T2-T3-T4 (time gap with a min. length of
3.5 bytes)	

RTU slave response (sent from the VFD to the master):

Communication

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
ADDR	02 H
CMD	06 H
High-order bit of data writing address	00 H
Low-order bit of data writing address	04 H
Data content high-order bit	13 H
Data content low-order bit	88 H
CRC low-order bit	C5H
CRC high-order bit	6 HH
END	T1-T2-T3-T4 (time gap with a min. length of
3.5 bytes)	

Note: Sections 10.4.1 and 10.4.2 mainly describe the command formats. For the detailed application, Refer to section 10.4.8.

10.4.3 Command code 08H, diagnosis

Sub-function code description:

Sub-function code	Description
0000	Return data based on query requests

For example, to query about the circuit detection information about the VFD whose address is 01 H , the query and return strings are the same, and the formats are described in the following tables.

RTU master command:

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
ADDR	01 H
CMD	08 H
Sub-function code high-order bit	00 H
Sub-function code low-order bit	00 H
Data content high-order bit	12 H
Data content low-order bit	ABH
CRC CHK low-order bit	ADH
CRC CHK high-order bit	14 H
END	T1-T2-T3-T4 (time gap with a min. length
of 3.5 bytes)	

RTU slave response:

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
ADDR	01 H
CMD	08 H
Sub-function code high-order bit	00 H
Sub-function code low-order bit	00 H
Data content high-order bit	12 H
Data content low-order bit	ABH
CRC CHK low-order bit	ADH
CRC CHK high-order bit	14 H
END	T1-T2-T3-T4 (time gap with a min. length of
3.5 bytes)	

10.4.4 Command code 10H, continuous writing

The command code 10 H is used by the master to write data to the VFD. The quantity of data to be written is determined by "Data count", and a maximum of 16 pieces of data can be written.

For example, to write $5000(1388 \mathrm{H})$ and $50(0032 \mathrm{H})$ respectively to 0004 H and 0005 H of the VFD whose slave address is 02 H , the frame structures are described in the following.

RTU master command (sent from the master to the VFD):

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
ADDR	02 H
CMD	10 H
High-order bit of data writing address	00 H
Low-order bit of data writing address	04 H
Data count high-order bit	00 H
Data count low-order bit	02 H
Number of bytes	04 H
Content high-order bit of 0004H	13 H
Content low-order bit of 0004H	88 H
Content high-order bit of 0005H	00 H
Content low-order bit of 0005H	32 H
CRC low-order bit	C 5 H
CRC high-order bit	6 EH
END	T1-T2-T3-T4 (time gap with a min. length of
3.5 bytes)	

RTU slave response (sent from the VFD to the master)

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
ADDR	02 H
CMD	10 H
High-order bit of data writing address	00 H
Low-order bit of data writing address	04 H
Data count high-order bit	00 H
Data count low-order bit	02 H
CRC low-order bit	C5H
CRC high-order bit	6 EH
END	T1-T2-T3-T4 (time gap with a min. length of
3.5 bytes)	

10.4.5 Data address definition

This section describes the address definition of communication data. The addresses are used for controlling the running, obtaining the status information, and setting function parameters of the VFD.

10.4.5.1 Function code address format rules

The address of a function code consists of two bytes, with the high-order bit on the left and low-order bit on the right. The high-order bit ranges from 00 to ffH , and the low-order bit also ranges from 00 to ffH. The high-order bit is the hexadecimal form of the group number before the dot mark, and low-order bit is that of the number behind the dot mark. Take F 05.06 as an example: The group number is 05 , that is, the high-order bit of the parameter address is the hexadecimal form of 05 ; and the number behind the dot mark is 06 , that is, the low-order bit is the hexadecimal form of 06 . Therefore, the function code address is 0506 H in the hexadecimal form. For example, the parameter address of F 10.01 is 0 A 01 H .

Function code	Name	Description	Setting range	Default	Modify
$\underline{\text { F12.16 }}$	Simple PLC mode	0: Stop after running once 1: Keep running with the final value after running once 2: Cyclic running	$0-2$	0	0
$\underline{\text { F12.17 }}$	Simple PLC memory selection	0: Without memory after power-off 1: With memory after power-off	$0-1$	0	0

Note:

- The parameters in the F99 group are set by the manufacturer and cannot be read or modified.

Some parameters cannot be modified when the VFD is running; some cannot be modified regardless of the VFD status. Pay attention to the setting range, unit, and description of a parameter when modifying it.

- The service life of the Electrically Erasable Programmable Read-Only Memory (EEPROM) may be reduced if it is frequently used for storage. Some function codes do not need to be stored during communication. The application requirements can be met by modifying the value of the on-chip RAM, that is, modifying the MSB of the corresponding function code address from 0 to 1. For example, if $\underline{F 00.07}$ is not to be stored in the EEPROM, you need only to modify the value in the RAM, that is, set the address to 8007 H . The address can be used only for writing data to the on-chip RAM, and it is invalid when used for reading data.

10.4.5.2 Description of other function addresses

In addition to modifying the parameters of the VFD, the master can also control the VFD, such as starting and stopping it, and monitoring the operation status of the VFD. The following table describes other function parameters.

Function	Address	Data description	R/W
Communication-based control command	2000H	0001H: Forward running	R/W
		0002H: Reverse running	
		0003H: Forward jogging	
		0004H: Reverse jogging	
		0005H: Stop	
		0006H: Coast to stop (emergency stop)	
		0007H: Fault reset	
		0008H: Jogging to stop	
Communication-based value setting	2001H	Communication-based frequency setting (0Fmax, unit: 0.01 Hz)	R/W
	2002H	PID setting, range (0-1000, 1000 corresponding to 100.0\%)	
	2003H	PID feedback, range (0-1000, 1000 corresponding to 100.0%)	R/W
	2004H	$\begin{array}{lllll}\text { Torque setting } & (-3000 & -\quad+3000, & 1000 \\ \text { corresponding to } 100.0 \% & \text { of the motor rated }\end{array}$ current)	R/W
	2005H	Setting of the upper limit of the forward running	R/W

Communication

Function	Address	Data description	R/W
		frequency (0-Fmax, unit: 0.01 Hz)	
	2006H	Setting of the upper limit of the reverse running frequency (0-Fmax, unit: 0.01 Hz)	R/W
	2007H	Upper limit of the electromotion torque (0-3000, 1000 corresponding to 100.0% of the motor rated current)	R/W
	2008H	Upper limit of the brake torque ($0-3000,1000$ corresponding to 100.0% of the motor rated current)	R/W
	2009H	Special control command word: Bit0-1: =00: Motor $1=01$: Motor 2 Bit2: =1 Enable speed/torque control switchover =0: Disable speed/torque control switchover Bit3: =1 Clear electricity consumption $=0$: Not clear electricity consumption Bit4: =1 Pre-excitation; =0: Disable pre-excitation Bit5: =1 DC brake =0: Disable DC brake	R/W
	200AH	Virtual input terminal command, range: $0 \times 000-$ 0x3FF Corresponding to S8/S7/S6/S5/HDIB/HDIA/S4/ S3/ S2/S1	R/W
	200BH	Virtual output terminal command, range: $0 \times 00-$ 0x0F Corresponding to local RO2/RO1/HDO/Y1	R/W
	200CH	Voltage setting (used for V/F separation) (0-1000, 1000 corresponding to 100.0% of the motor rated voltage)	R/W
	200DH	AO output setting 1 (-1000-+1000, 1000 corresponding to 100.0%)	R/W
	200EH	AO output setting $2(-1000-+1000,1000$ corresponding to 100.0%)	R/W
VFD status word 1	2100 H	0001H: Forward running	R
		0002H: Reverse running	

Function	Address	Data description	R/W
		0003H: Stopped	
		0004H: Faulty	
		0005H: POFF	
		0006H: Pre-excited	
VFD status word 2	2101H	Bit0: $=0$: Not ready to run $=1$: Ready to run Bi1-2: =00: Motor $1=01$: Motor 2 Bit3: =0: Asynchronous motor =1: Synchronous motor Bit4: $=0$: No overload alarm $=1$: Overload alarm Bit5-Bit6: =00: Keypad-based control $=01$: Terminal-based control =10: Communication-based control Bit7: Reserved Bit8: $=0$: Speed control $=1$: Torque control Bit9: $=0$: Non position control $=1$: Position control Bit11-Bit10: =0: Vector 0 =1: Vector 1 =2: Closed-loop vector $=3$: Space voltage vector	R
VFD fault code	2102H	Refer to the description of fault types.	R
VFD identification code	2103H	FD300----0x01A2	R
Running frequency	3000 H	0-Fmax (Unit: 0.01 Hz)	R
Set frequency	3001H	0-Fmax (Unit: 0.01 Hz)	R
Bus voltage	3002H	0.0-2000.0V (Unit: 0.1V)	R
Output voltage	3003H	0-1200V (Unit: 1V)	R
Output current	3004H	0.0-3000.0A (Unit: 0.1A)	R
Rotating speed	3005H	0-65535 (Unit: 1RPM)	R
Output power	3006H	-300.0-300.0\% (Unit: 0.1\%)	R

Function	Address	Data description	R / W	
Output torque	3007 H	$-250.0-250.0 \%$ (Unit: 0.1%)		R
Closed-loop setting	3008 H	$-100.0-100.0 \%$ (Unit: 0.1%)		

The Read/Write (R/W) characteristics indicate whether a function can be read and written. For example, "Communication-based control command" can be written, and therefore the command code 6 H is used to control the VFD. The R characteristic indicates that a function can only be read, and W indicates that a function can only be written.

Note: Some parameters in the preceding table are valid only after they are enabled. Take the running and stop operations as examples, you need to set "Running command channel" (F00.02) to
"Communication", and set "Communication running command channel" ($\mathbf{F 0 0 . 0 2}^{(1)}$) to the Modbus communication channel. For another example, when modifying "PID setting", you need to set "PID reference source" ($\mathbf{(1 1 . 0 0}$) to Modbus communication.

The following table describes the encoding rules of device codes (corresponding to the identification code 2103 H of the VFD).

Eight high-order bits of code	Meaning	Eight low-order bits of code	Meaning
01	FD	0×08	FD380 vector VFD
		0×09	FD250 vector VFD
		$0 \times 0 \mathrm{a}$	FD20 vector VFD
		0xa0	FD300 vector VFD

10.4.6 Fieldbus scale

In practical applications, communication data is represented in the hexadecimal form, but hexadecimal values cannot represent decimals. For example, 50.12 Hz cannot be represented in the hexadecimal form. In such cases, we can multiply 50.12 by 100 to obtain an integer 5012, and then 50.12 can be represented as 1394 H (5012 in the decimal form) in the hexadecimal form.

In the process of multiplying a non-integer by a multiple to obtain an integer, the multiple is referred to as a fieldbus scale.

The fieldbus scale depends on the number of decimals in the value specified in "Detailed parameter description" or "Default value". If there are n decimals in the value, the fieldbus scale m is the $n^{\text {th }}$-power of 10 . Take the following table as an example, m is 10.

Function code	Name	Description	Setting range	Default	Modify
$\underline{\text { F10.31 }}$	Wake-up-from-sleep delay	$0.0-3600.0$ s (valid when F06.20 is 2)	$0.00-3600.0$	0.0 s	0
$\underline{\text { F10.32 }}$	Restart after power failure	0: Disable 1: Enable	$0-1$	0	0

The value specified in "Setting range" or "Default" contains one decimal, so the fieldbus scale is 10 . If the value received by the upper computer is 50 , the value of "Wake-up-from-sleep delay" of the VFD is $5.0(5.0=50 / 10)$.
To set the "Wake-up-from-sleep delay" to 5.0 s through Modbus communication, you need first to multiply 5.0 by 10 according to the scale to obtain an integer 50 , that is, 32 H in the hexadecimal form, and then transmit the following write command:

$\underline{01} \quad \underline{06} \quad \underline{0114} \quad \underline{0032} \quad 49$ E7
 $\begin{array}{lccc}\text { VFD } & \begin{array}{c}\text { Write } \\ \text { command }\end{array} & \begin{array}{c}\text { Parameter } \\ \text { address }\end{array} & \begin{array}{c}\text { Parameter } \\ \text { data }\end{array}\end{array} \quad$ CRC

After receiving the command, the VFD converts 50 into 5.0 based on the fieldbus scale, and then sets "Wake-up-from-sleep delay" to 5.0s.

For another example, after the upper computer transmits the "Wake-up-from-sleep delay" parameter read command, the master receives the following response from the VFD:
$\frac{\mathbf{0 1}}{\frac{1}{\text { VFD }}}$ address
$03 \quad 02$
Write 2-byte command data
0032
Parameter data
3991
CRC

The parameter data is 0032 H , that is, 50 , so 5.0 is obtained based on the fieldbus scale ($50 / 10=5.0$). In this case, the master identifies that the "Wake-up-from-sleep delay" is 5.0 s.

10.4.7 Error message response

Operation errors may occur in communication-based control. For example, some parameters can only be read, but a write command is transmitted. In this case, the VFD returns an error message response.

Error message responses are sent from the VFD to the master. The following table describes the codes and definitions of the error message responses.

Code	Name	Description
01 H	Invalid command The command code received by the upper computer is not allowed to - The function code is applicable only on new devices and is not implemented on this device. - The slave is in the faulty state when processing this request.	
02 H	Invalid data address	For the VFD, the data address in the request of the upper computer is not allowed. In particular, the combination of the register address and the number of the to-be-transmitted bytes is invalid.
$03 H$	Invalid data	
value	The received data domain contains a value that is not allowed. The value indicates the error of the remaining structure in the combined request. Note: It does not mean that the data item submitted for storage in the register includes a value unexpected by the program.	

Code	Name	Description
04 H	Operation failure	The parameter is set to an invalid value in the write operation. For example, a function input terminal cannot be set repeatedly.
05 H	Password error	The password entered in the password verification address is different from that set in F17.00.
06 H	Data frame error	The length of the data frame transmitted by the upper computer is incorrect, or in the RTU format, the value of the CRC check bit is inconsistent with the CRC value calculated by the lower computer.
07 H	Parameter read-only	The parameter to be modified in the write operation of the upper computer is a read-only parameter.
08 H	Parameter cannot be modified in running	The parameter to be modified in the write operation of the upper computer cannot be modified during the running of the VFD.
09 H	Password protection	A user password is set, and the upper computer does not provide the password to unlock the system when performing a read or write operation. The error of "system locked" is reported.

When returning a response, the slave device uses a function code domain and fault address to indicate whether it is a normal response (no error) or exception response (some errors occur). In a normal response, the device returns the corresponding function code and data address or sub-function code. In an exception response, the device returns a code that is equal to a normal code, but the first bit is logic 1.

For example, if the master device transmits a request message to a slave device for reading a group of function code address data, the code is generated as follows:

00000011 (03 H in the hexadecimal form)

For an exception response, the following code is returned:

10000011 (83 H in the hexadecimal form)

In addition to the modification of the code, the slave device returns a byte of exception code that describes the cause of the exception. After receiving the exception response, the typical processing of the master device is to transmit the request message again or modify the command based on the fault information.

For example, to set the "Channel of running commands" (F00.02, the parameter address is 0001 H) of the VFD whose address is 01 H to 03 , the command is as follows:

| $\frac{01}{\mathrm{VFD}}$address | $\frac{06}{\text { Read }}$command | $\frac{0001}{\text { Parameter }}$ address |
| :--- | :--- | :--- | :--- | :--- |$\quad \frac{0003}{$| Parameter |
| :---: |
| data |}$\quad \frac{980 B}{\text { CRC }}$

However, the setting range of the "Running command channel" is 0 to 2 . The value 3 exceeds the setting range. In this case, the VFD returns an error message response as shown in the following:

The exception response code 86 H (generated based on the highest-order bit "1" of the write command 06 H) indicates that it is an exception response to the write command $(06 \mathrm{H})$. The error code is 04 H . From the preceding table, we can Refer to that it indicates the error "Operation failure", which means "The parameter is set to an invalid value in the write operation".

10.4.8 Read/Write operation example

For details about the formats of the read and write commands, Refer to sections 10.4.1 and 10.4.2.

10.4.8.1 Examples of read command 03H

Example 1: Read status word 1 of the VFD whose address is 01H. According to the table of other function addresses, the parameter address of status word 1 of the VFD is 2100 H .

The read command transmitted to the VFD is as follows:

$\frac{01}{$ FD address }	$\frac{03}{$ Read command }	$\frac{2100}{$ Parameter address }	0001	$\frac{8 E 36}{\text { Data quantity }}$

Assume that the following response is returned:

01	$\underline{03}$	$\underline{02}$	$\underline{0003}$	$\underline{\text { F8 } 45}$
VFD address	$\underline{$ Read command $}$	Number of bytes	Data content	CRC

The data content returned by the VFD is 0003 H , which indicates that the VFD is in the stopped state.
Example 2: View information about the VFD whose address is 03H, including "Present fault type" (F13.11) to "5th-last fault type" (F13.16) of which the parameter addresses are 0D0BH to 0D10H (contiguous 6 parameter addresses starting from ODOBH).

The command transmitted to the VFD is as follows:

03	03	071 B	0006	B5 59
VFD address	Read command	Start address	6 parameters in total	CRC

Assume that the following response is returned:

According to the returned data, all the fault types are 0023 H , that is, 35 in the decimal form, which means the maladjustment fault (STo)

10.4.8.2 Examples of write command 06 H

Example 1: Set the VFD whose address is 03 H to be forward running. Refer to the table of other function parameters, the address of "Communication-based control command" is 2000 H , and 0001 H indicates forward running.

Function	Address	Data description	R/W
Communication-based control command	2000H	0001H: Forward running	R/W
		0002H: Reverse running	
		0003H: Forward jogging	
		0004H: Reverse jogging	
		0005H: Stop	
		0006H: Coast to stop (emergency stop)	
		0007H: Fault reset	
		0008H: Jogging to stop	

The command transmitted by the master is as follows:

$\frac{03}{$ VFD address }	$\frac{06}{$ Write command }	$\frac{2000}{$ Parameter address }	$\frac{0001}{$ Forward running }

If the operation is successful, the following response is returned (same as the command transmitted by the master):

$\frac{03}{\text { VFD }}$address	$\frac{06}{$ Write command }	$\frac{2000}{$ Parameter address }	$\frac{0001}{$ Forward running }	$\frac{4228}{\text { CRC }}$

Example 2: Set the "Max. output frequency" of the VFD whose address is 03 H to 100 Hz .

Function code	Name	Description	Setting range	Default	Modify
F00.07	Max. output frequency	$\mathrm{F} 00.08-630.00 \mathrm{H}$ $(400.00 \mathrm{~Hz})$	$100.00-$ 630.00	50.00 Hz	0

According to the number of decimals, the fieldbus scale of the "Max. output frequency" (F00.07) is 100. Multiply 100 Hz by 100 . The value 10000 is obtained, and it is 2710 H in the hexadecimal form.

The command transmitted by the master is as follows:

$\frac{03}{$ VFD address }	$\frac{06}{$ Write command }	Parameter address	$\frac{2710}{$ Parameter data }	$\underline{6214}$

If the operation is successful, the following response is returned (same as the command transmitted by the master):

$\frac{03}{\text { VFD }}$ address $\quad \frac{06}{$| Write |
| :---: |
| command |}$\frac{0003}{$| Parameter |
| :---: |
| address |}$\quad \frac{2710}{$| Parameter |
| :---: |
| data |}$\quad \frac{6214}{\text { CRC }}$

Note: In the preceding command description, spaces are added to a command just for explanatory purposes. In practical applications, no space is required in the commands.

10.4.8.3 Examples of continuously write command $\mathbf{1 0 H}$

Example 1: Set the VFD whose address is 01 H to be forward running at the frequency of 10 Hz . Refer to the table of other function parameters, the address of "Communication-based control command" is $2000 \mathrm{H}, 0001 \mathrm{H}$ indicates forward running, and the address of "Communication-based value setting" is 2001 H , as shown in the following figure. 10 Hz is 03 E 8 H in the hexadecimal form.

Function	Address	Data description	R/W
Communication-based control command	2000H	0001H: Forward running	R/W
		0002H: Reverse running	
		0003H: Forward jogging	
		0004H: Reverse jogging	
		0005H: Stop	
		0006H: Coast to stop (emergency stop)	

Communication

Function	Address	Data description	R／W
Communication－based value setting	2001H	Communication－based frequency setting（0－Fault reset Fmax，unit：0．01 Hz）	
	0008H：Jogging to stop		
	2002H	PID setting，range（0－1000，1000 corresponding to 100．0\％）	

In the actual operation，set F00．02 to 2 and $\mathrm{F00.03}$ to 8 ．
The command transmitted by the master is as follows：

01	10	2000	0002	04	0001	03 E8	3B 10
VFD address	Continuous write comma comma	Parameter address	$\begin{gathered} \text { Parameter } \\ \text { quantity } \end{gathered}$	Number of	$\begin{aligned} & \text { Froward } \\ & \text { running } \end{aligned}$	10 Hz	CR

If the operation is successful，the following response is returned：

$$
\frac{01}{\frac{10}{\begin{array}{c}
\text { VFD } \\
\text { address }
\end{array}} \frac{10}{\begin{array}{c}
\text { continuous } \\
\text { write } \\
\text { command }
\end{array}}} \frac{2000}{\frac{2000}{\text { Parameter }} \text { address }} ⿺ ⿻ ⿻ 一 ㇂ ㇒ \begin{gathered}
\text { Parameter } \\
\text { quantity }
\end{gathered} \quad \underline{\text { CRC }}
$$

Example 2：Set＂ACC time＂of the VFD whose address is 01 H to 10 s，and＂DEC time＂to 20 s．

$\underline{F 00.13}$	ACC time 1		Model depended	O
F00．14	DEC time 1		Model depended	0

The address of F 00.13 is $000 \mathrm{D}, 10$ s is 0064 H in the hexadecimal form，and 20 s is 00 C 8 H in the hexadecimal form．

The command transmitted by the master is as follows：

01	10	00 0B	0002	04	0064	8	F2 55
VFD address	Continuous write	Parameter address	$\begin{aligned} & \text { Parameter } \\ & \text { quantity } \end{aligned}$	Number of bytes	10s	20s	CRC

If the operation is successful，the following response is returned：

Note: In the preceding command description, spaces are added to a command just for explanatory purposes. In practical applications, no space is required in the commands.

10.4.8.4 Modbus communication commissioning example

A PC is used as the host, an RS232-RS485 converter is used for signal conversion, and the PC serial port used by the converter is COM1 (an RS232 port). The upper computer commissioning software is the serial port commissioning assistant Commix, which can be downloaded from the Internet. Download a version that can automatically execute the CRC check function. The following figure shows the interface of Commix.

First, set the serial port to COM1. Then, set the baud rate consistently with F14.00. The data bits, check bits, and end bits must be set consistently with F14.01. If the RTU mode is selected, you need to select the hexadecimal form Input HEX. To set the software to automatically execute the CRC function, you need to select ModbusRTU, select CRC16 (MODBU SRTU), and set the start byte to 1 . After the auto CRC check function is enabled, do not enter CRC information in commands. Otherwise, command errors may occur due to repeated CRC check.

The commissioning command to set the VFD whose address is 03H to be forward running is as follows:

03	06	2000	0001	4228
VFD address	Write	Parameter address	Forward running	CRC

Note:

Set the address (ㅍ14.02) of the VFD to 03.
Set "Channel of running commands" (F00.02) to "Communication", and set "Communication channel of running commands" ($\underline{\text { F00.18 }}$) to the Modbus communication channel.
Click Send. If the line configuration and settings are correct, a response transmitted by the VFD is received as follows:

10.5 Common communication faults

Common communication faults include the following:

- No response is returned.
- The VFD returns an exception response.

Possible causes of no response include the following:

- The serial port is set incorrectly. For example, the converter uses the serial port COM1, but COM2 is selected for the communication.
- The settings of the baud rates, data bits, end bits, and check bits are inconsistent with those set on the VFD.
- The positive pole (+) and negative pole (-) of the RS485 bus are connected reversely.
- The resistor connected to RS485 terminals on the terminal block of the VFD is set incorrectly.

Appendix A Technical data

A. 1 What this chapter contains

This chapter describes the technical data of the VFD and its compliance to CE and other quality certification systems.

A. 2 Derated application

A.2.1 Capacity

Choose a VFD model based on the rated current and power of the motor. To ensure the rated power of the motor, the rated output current of the VFD must be greater or equal to the rated current of the motor. The rated power of the VFD must be higher or equal to that of the motor.

Note:

- The rated capacity is the capacity at the ambient temperature of $40^{\circ} \mathrm{C}$.
- You need to check and ensure that the power flowing through the common DC connection in the common DC system does not exceed the rated power of the motor.

A.2.2 Derating

If the ambient temperature on the site where the VFD is installed exceeds $40^{\circ} \mathrm{C}$, the altitude exceeds 1000 m , a cover with heat dissipation vents is used, or the carrier frequency is higher than the recommended (F00.14), the VFD needs to be derated.

A.2.2.1. Derating due to temperature

When the temperature ranges from $+40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, the rated output current is derated by 2% for each increased $1^{\circ} \mathrm{C}$. For the actual derating, refer to the following figure.

Note: It is not recommended to use the VFD at a temperature higher than $50^{\circ} \mathrm{C}$. If you do, you shall be held accountable for the consequences caused.

A.2.2.2. Derating due to altitude

When the altitude of the site where the VFD is installed is lower than 1000 m , the VFD can run at the rated power. When the altitude exceeds 1000 m , derate by 1% for every increase of 100 m . When the altitude exceeds 3000 m , consult the local FGI dealer or local FGI office for details.

A.2.2.3. Derating due to carrier frequency

The power of the VFD varies according to carrier frequencies. The VFD rated power is defined based on the carrier frequency set in factory. If the carrier frequency exceeds the factory setting, the power of the VFD is derated by 10% for each increased 1 kHz .

A. 3 Grid specifications

Grid voltage	AC $3 \mathrm{PH} 380 \mathrm{~V} \sim 480 \mathrm{~V}$
Short-circuit capacity	According to the definition of IEC 60439-1, the VFDs are suitable for the use on the grid with maximum expected short-circuit current no more than 100 kA at the maximum rated voltage.
Frequency	$50 / 60 \mathrm{~Hz} \pm 5 \%$, with a maximum change rate of $20 \% / \mathrm{s}$

A. 4 Motor connection data

Motor type	Asynchronous induction motor or permanent magnetic synchronous motor
Voltage	$0-U 1$ (rated voltage of the motor), 3PH symmetrical, Umax (rated voltage of the VFD) at the field-weakening point
Short-circuit protection	The short-circuit protection for the motor output meets the requirements of IEC $61800-5-1$.
Frequency	$0-400 \mathrm{~Hz}$
Frequency resolution	0.01 Hz
Current	Refer to 4.6 Product ratings.
Power limit	1.5 times of the rated power of the motor
Field-weakening point	$10-400 \mathrm{~Hz}$
Carrier frequency	$4,8,12$, or 15 kHz

A.4.1 EMC compatibility and motor cable length

The following table describes the maximum motor cable lengths that meet the requirements of the EU EMC directive (2014/30/EU).

All models (with external EMC filters)	Maximum motor cable length (m)
Second environment (C3)	30

You can learn the maximum length of the motor cable through the running parameters of the VFD. To understand the accurate maximum cable length for using an external EMC filter, contact the local FGI office.
For description about the environments category II (C3), see section A. 6 EMC regulations.

A. 5 Application standards

The following table describes the standards that the VFD complies with.

EN/ISO 13849-1	Safety of machinery—Safety-related parts of control systems—Part 1: General principles for design
IEC/EN 60204-1	Safety of machinery—Electrical equipment of machines. Part 1: General requirements
IEC/EN 62061	Safety of machinery-Safety-related functional safety of electrical, electronic, and programmable electronic control systems
IEC/EN 61800-3	Adjustable speed electrical power drive systems—Part 3:EMC requirements and specific test methods
IEC/EN 61800-5-1	Adjustable speed electrical power drive systems—Part 5-1: Safety requirements—Electrical, thermal and energy

A.5.1 CE marking

The CE marking on the name plate of the VFD indicates that the VFD is CE-compliant, meeting the regulations of the European low-voltage directive (2014/35/EU) and EMC directive (2014/30/EU).

A.5.2 EMC compliance declaration

European union (EU) stipulates that the electric and electrical devices sold in Europe cannot generate electromagnetic disturbance that exceeds the limits stipulated in related standards, and can work properly in environments with certain electromagnetic interference. The EMC product standard (EN 61800-3) describes the EMC standards and specific test methods for adjustable speed electrical power drive systems. FGI products have strictly followed these EMC regulations.

A. 6 EMC regulations

The EMC product standard (EN 61800-3) describes the EMC requirements on VFDs.
Application environment categories
Category I: Civilian environments, including application scenarios where VFDs are directly connected to the civil power supply low-voltage grids without intermediate transformers

Category II: All environments except those in Category I.
VFD categories
C1: Rated voltage lower than 1000 V , applied to environments of Category I.
C2: Rated voltage lower than 1000 V , non-plug, socket, or mobile devices; power drive systems that must be installed and operated by specialized personnel when applied to environments of Category I

Note: The EMC standard IEC/EN 61800-3 no longer restricts the power distribution of VFDs, but it specifies their use, installation, and commissioning. Specialized personnel or organizations must have the necessary skills (including the EMC-related knowledge) for installing and/or performing commissioning on the electrical drive systems.

C3: Rated voltage lower than 1000 V , applied to environments of Category II. They cannot be applied to environments of Category I.

C4: Rated voltage higher than 1000 V , or rated current higher or equal to 400 A , applied to complex
systems in environments of Category II.

A.6.1 VFD category of C2

The induction disturbance limit meets the following stipulations:

1. Select an optional EMC filter according to "Optional peripheral accessories" and install it following the description in the EMC filter manual.
2. Select the motor and control cables according to the description in the manual.
3. Install the VFD according to the description in the manual.

\diamond Currently in environments in China, the VFD may generate radio interference, you need to take measures to reduce the interference.

B.6.2 VFD category of C3

The anti-interference performance of the VFD meets the requirements of environments Category II in the IEC/EN 61800-3 standard.

The induction disturbance limit meets the following stipulations:

1. Select an optional EMC filter according to "Optional peripheral accessories" and install it following the description in the EMC filter manual.
2. Select the motor and control cables according to the description in the manual.
3. Install the VFD according to the description in the manual.

| A | VFDs of C3 category cannot be applied to civilian low-voltage common grids. |
| :--- | :--- | :--- |
| When applied to such grids, the VFDs may generate radio frequency
 electromagnetic interference. | |

Appendix B Dimension drawings

B． 1 What this chapter contains

This chapter describes the dimension drawings of the VFD．The dimension unit used in the drawings is mm ．

B． 2 Keypad structure

B．2．1 Structure diagram

Figure B． 1 Keypad structure diagram

键盘托架尺寸图

安装开孔尺寸图

Figure B． 2 Keypad installation bracket（optional）

B. 3 VFD dimension

B.3.1 Wall-mounting dimensions

Figure B. $3 \quad$ 2.2kW and below VFDs wall-mounting diagram

Figure B. $4 \quad 4 \sim 5.5 \mathrm{~kW}$ VFDs wall-mounting diagram

Figure B. $5 \quad 7.5 \sim 11 \mathrm{~kW}$ VFDs wall-mounting diagram

Table B. 1 Wall-mounting dimensions (unit: mm)

| VFD models | Dimension(mm) | | | Installation size(mm) | | Installation
 hole | Screw |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | W | H1 | D | A1 | A2 | | |
| 2.2 kW and
 below | 60 | 170 | 146 | 46.5 | 160 | $\Phi 5$ | M 4 |
| $4 \sim 5.5 \mathrm{~kW}$ | 60 | 212 | 146 | 46.5 | 202 | $\Phi 5$ | M 4 |
| $7.5 \sim 11 \mathrm{~kW}$ | 75 | 224 | 153 | 62 | 224 | $\Phi 5$ | M 4 |

Appendix C Optional peripheral accessories

C. 1 What this chapter contains

This chapter describes how to select optional accessories of the VFD.

C. 2 Wiring of peripheral accessories

The following figure shows the external wiring of the VFD.

Note:

- The DC reactor can be optionally equipped with built-in, which can be delivered after being installed by the manufacturer

Image	Name	Description
11	Cable	Accessory for signal transmission
	Breaker	Device for electric shock prevention and protection against short-to-ground that may cause current leakage and fire. Select residual-current circuit breakers (RCCBs) that are applicable to VFDs and can restrict high-order harmonics, and of which the rated sensitive current for

| one VFD is larger than 30 mA. | |
| :--- | :--- | :--- |
| Input reactor | Accessories used to improve the current adjustment
 loefficient on the input side of the VFD, and thus restrict
 high-order harmonic currents.
 The VFD models of 132G/160P and higher can be
 directly connected to external DC reactors. |
| Braking unit | Accessory that restricts the electromagnetic interference
 generated by the VFD and transmitted to the public grid
 through the power cable. Try to install the input filter near
 the input terminal side of the VFD. |
| or braking | |
| resistor | Accessories used to consume the regenerative energy of
 the motor to reduce the DEC time.
 be configured with braking resistors, those of 132G/160P
 and higher also need to be configured with braking units,
 and those of 045G/055P-055G/075P can be configured
 with optional built-in braking units. |
| Output filter | Accessory used to restrict interference generated in the
 wiring area on the output side of the VFD. Try to install
 the output filter near the output terminal side of the VFD. |

C. 3 Power supply

Refer to Installation guidelines.
\square

C. 4 Cables

C.4.1 Power cables

The sizes of the input power cables and motor cables must meet the local regulation.

- The input power cables and motor cables must be able to carry the corresponding load currents.
- The maximum temperature margin of the motor cables in continuous operation cannot be lower than $70^{\circ} \mathrm{C}$.
- The conductivity of the PE grounding conductor is the same as that of the phase conductor, that is, the cross-sectional areas are the same.
- For details about the EMC requirements, refer to o Appendix A Technical data

To meet the EMC requirements stipulated in the CE standards, you must use symmetrical shielded cables as motor cables (as shown in the following figure).

Four-core cables can be used as input cables, but symmetrical shielded cables are recommended. Compared with four-core cables, symmetrical shielded cables can reduce electromagnetic radiation as well as the current and loss of the motor cables.

Note: If the conductivity of the shield layer of the motor cables cannot meet the requirements, separate PE conductors must be used.

To protect the conductors, the cross-sectional area of the shielded cables must be the same as that of the phase conductors if the cable and conductor are made of materials of the same type. This reduces grounding resistance, and thus improves impedance continuity.

To effectively restrict the emission and conduction of radio frequency (RF) interference, the conductivity of the shielded cable must at least be $1 / 10$ of the conductivity of the phase conductor. This requirement can be well met by a copper or aluminum shield layer. The following figure shows the minimum requirement on motor cables of a VFD. The cable must consist of a layer of spiral-shaped copper strips. The denser the shield layer is, the more effectively the electromagnetic interference is restricted.

Cross-section of the cable

C.4.2 Control cables

All analog control cables and cables used for frequency input must be shielded cables. Analog signal cables need to be double-shielded twisted-pair cables (as shown in figure a). Use one separate shielded twisted pair for each signal. Do not use the same ground wire for different analog signals.

Power cable arrangement
For low-voltage digital signals, double-shielded cables are recommended, but shielded or unshielded twisted pairs (as shown in figure b) also can be used. For frequency signals, however, only shielded cables can be used.

Relay cables need to be those with metal braided shield layers.
Keypads need to be connected by using network cables. In complicated electromagnetic environments, shielded network cables are recommended.

Note: Analog signals and digital signals cannot use the same cables, and their cables must be arranged separately.

Do not perform any voltage endurance or insulation resistance tests, such as high-voltage insulation tests or using a megameter to measure the insulation resistance, on the VFD or its components. Insulation and voltage endurance tests have been performed between the main circuit and chassis of each VFD before delivery. In addition, voltage limiting circuits that can automatically cut off the test voltage are configured inside the VFDs.

Note: Check the insulation conditions of the input power cable of a VFD according to the local regulations before connecting it.

C.4.3 Recommended cable sizes

Table C. 1 AC 3PH 380V (-15\%)-440V (+10\%) Recommended cable size

VFD models	$\begin{gathered} \text { R, S, T U,V,W } \\ (+)(-) \end{gathered}$		PE		Tightening torque (N.m)
	Recommended cable size $\mathbf{m m}^{\mathbf{2}}$	Recommended connector	Recommended cable size mm^{2}	Recommended connector	
FD200-0R4G-S2-B	1.5	E1508	1.5	GTNR1.5-4	1.3~1.5
FD200-0R7G-S2-B	1.5	E1508	1.5	GTNR1.5-4	1.3~1.5
FD200-1R5G-S2-B	2.5	E2508	2.5	GTNR2.5-4	1.3~1.5
FD200-2R2G-S2-B	2.5	E2508	2.5	GTNR2.5-4	1.3~1.5
FD200-0R4G-2-B	1.5	E1508	1.5	GTNR1.5-4	1.3~1.5
FD200-0R7G-2-B	1.5	E1508	1.5	GTNR1.5-4	1.3~1.5

VFD models	$\begin{gathered} \mathbf{R}, \mathrm{S}, \mathrm{~T} \quad \mathrm{U}, \mathrm{~V}, \mathrm{~W} \\ (+)(-) \end{gathered}$		PE		Tightening torque (N.m)
	Recommended cable size $\mathbf{m m}^{2}$	Recommended connector	Recommended cable size $\mathbf{m m}^{\mathbf{2}}$	Recommended connector	
FD200-1R5G-2-B	2.5	E2508	2.5	GTNR2.5-4	1.3~1.5
FD200-2R2G-2-B	2.5	E2508	2.5	GTNR2.5-4	1.3~1.5
FD200-004G-2-B	2.5	E2508	2.5	GTNR2.5-4	1.3~1.5
FD200-5R5G-2-B	4	E4009	4	GTNR4-4	1.3~1.5
FD200-7R5G-2-B	4	E4009	6	GTNR6-4	1.3~1.5
FD200-1R5G-4-B	1.5	E1508	1.5	GTNR1.5-4	1.3~1.5
FD200-2R2G-4-B	1.5	E1508	1.5	GTNR1.5-4	1.3~1.5
FD200-004G-4-B	2.5	E2508	2.5	GTNR2.5-4	1.3~1.5
FD200-5R5G-4-B	2.5	E2508	2.5	GTNR2.5-4	1.3~1.5
FD200-7R5G-4-B	4	E4009	4	GTNR4-4	1.3~1.5
FD200-011G-4-B	4	E4009	4	GTNR4-4	1.3~1.5
FD200-015G-4-B	6	E6012	6	GTNR6-6	4~6
FD200-018G-4-B	10	E10-12	10	GTNR10-6	4~6

C.4.4 Cable arrangement

Motor cables must be arranged away from other cables. The motor cables of several VFDs can be arranged in parallel. It is recommended that you arrange the motor cables, input power cables, and control cables separately in different trays. The output dU/dt of the VFDs may increase electromagnetic interference on other cables. Do not arrange other cables and the motor cables in parallel.

If a control cable and power cable must cross each other, ensure that the angle between them is 90 degrees.

The cable trays must be connected properly and well grounded. Aluminum trays can implement local equipotential.

The following figure shows the cable arrangement distance requirements.

Cable arrangement distances

C.4.5 Insulation inspection

Check the motor and the insulation conditions of the motor cable before running the motor.

1. Ensure that the motor cable is connected to the motor, and then remove the motor cable from the U, V, and W output terminals of the VFD.
2. Use a megameter of $500 \mathrm{~V} D \mathrm{to}$ measure the insulation resistance between each phase conductor and the protection grounding conductor. For details about the insulation resistance of the motor, refer to the description provided by the manufacturer.
Note: The insulation resistance is reduced if it is damp inside the motor. If it may be damp, you need to dry the motor and then measure the insulation resistance again.

C. 5 Breaker and electromagnetic contactor

You need to add a fuse to prevent overload.
You need to configure a manually manipulated molded case circuit breaker (MCCB) between the AC power supply and VFD. The breaker must be locked in the open state to facilitate installation and inspection. The capacity of the breaker needs to be 1.5 to 2 times the rated current of the VFD.

| 4 According to the working principle and structure of breakers, if the |
| :---: | :--- |
| manufacturer's regulation is not followed, hot ionized gases may escape from |
| the breaker enclosure when a short-circuit occurs. To ensure safe use, exercise |
| extra caution when installing and placing the breaker. Follow the manufacturer's |
| instructions. |

To ensure safety, you can configure an electromagnetic contactor on the input side to control the switch-on and switch-off of the main circuit power, so that the input power supply of the VFD can be effectively cut off when a system fault occurs.

Table C. 2 AC 3PH 380V(-15\%)-440V(+10\%) Breaker, Fuse and Contactor ratings

VFD models	Breaker rated current (A)	Fuse rated current (\mathbf{A})	Contactor rated current (A)
FD200-OR4G-S2-B	10	10	9
FD200-0R7G-S2-B	16	16	12
FD200-1R5G-S2-B	25	25	25

VFD models	Breaker rated current (A)	Fuse rated current (A)	Contactor rated current (\mathbf{A})
FD200-2R2G-S2-B	50	40	32
FD200-0R4G-2-B	6	6	9
FD200-0R7G-2-B	10	10	9
FD200-1R5G-2-B	16	16	12
FD200-2R2G-2-B	25	25	18
FD200-004G-2-B	35	32	25
FD200-5R5G-2-B	35	32	32
FD200-7R5G-2-B	50	63	50
FD200-1R5G-4-B	6	10	9
FD200-2R2G-4-B	10	10	9
FD200-004G-4-B	20	20	18
FD200-5R5G-4-B	25	35	25
FD200-7R5G-4-B	32	40	32
FD200-011G-4-B	50	50	38
FD200-015G-4-B	63	60	50
FD200-018G-4-B	63	70	65

Note: The accessory specifications described in the preceding table are ideal values. You can select accessories based on the actual market conditions, but try not to use those with lower values.

C. 6 Reactors

When the voltage of the grid is high, the transient large current that flows into the input power circuit may damage rectifier components. You need to configure an AC reactor on the input side, which can also improve the current adjustment coefficient on the input side.

When the distance between the VFD and motor is longer than 50 m , the parasitic capacitance between the long cable and ground may cause large leakage current, and overcurrent protection of the VFD may be frequently triggered. To prevent this from happening and avoid damage to the motor insulator, compensation must be made by adding an output reactor. When a VFD is used to drive multiple motors, take the total length of the motor cables (that is, sum of the lengths of the motor cables) into account. When the total length is longer than 50 m , an output reactor must be added on the output side of the VFD. If the distance between the VFD and motor is 50 m to 100 m , select the reactor according to the following table. If the distance is longer than 100 m , contact FGI's technical support technicians.

VFDs 30 kW and above can optional built-in DC reactor. DC reactors can improve the power factor, avoid damage to bridge rectifiers caused due to large input current of the VFD when large-capacity transformers are connected, and also avoid damage to the rectification circuit caused due to harmonics generated by grid voltage transients or phase-control loads.

Table C. 3 Reactors list

VFD models	Input reactor	Output reactor
FD200-0R4G-S2-B	1	1
FD200-0R7G-S2-B	1	1
FD200-1R5G-S2-B	1	1
FD200-2R2G-S2-B	1	1
FD200-0R4G-2-B	ACR-1.5K-0.4SC-4/2.8M	OCR-1.5K-0.4SC-4/1.4M
FD200-0R7G-2-B	ACR-1.5K-0.4SC-4/2.8M	OCR-1.5K-0.4SC-4/1.4M
FD200-1R5G-2-B	ACR-3.7K-0.4SC-10/1.4M	0CR-3.7K-0.4SC-10/0.7M
FD200-2R2G-2-B	ACR-3.7K-0.4SC-10/1.4M	0CR-3.7K-0.4SC-10/0.7M
FD200-004G-2-B	ACR-5.5K-0.4SC-15/0.94M	OCR-5.5K-0.4SC-15/0.47M
FD200-5R5G-2-B	ACR-7.5K-0.4SC-20/0.7M	OCR-7.5K-0.4SC-20/0.35M
FD200-7R5G-2-B	ACR-15K-0.4SAL-35/0.36M	OCR-15K-0.4SAL-35/0.23M
FD200-1R5G-4-B	ACR-1.5K-0.4SC-4/2.8M	OCR-1.5K-0.4SC-4/1.4M
FD200-2R2G-4-B	ACR-2.2K-0.4SC-5/2.0M	OCR-2.2K-0.4SC-5/1.0M
FD200-004G-4-B	ACR-3.7K-0.4SC-10/1.4M	0CR-3.7K-0.4SC-10/0.7M
FD200-5R5G-4-B	ACR-5.5K-0.4SC-15/0.94M	OCR-5.5K-0.4SC-15/0.47M

Appendix C Optional peripheral accessories

VFD models	Input reactor	Output reactor
FD200-7R5G-4-B	ACR-7.5K-0.4SC-20/0.7M	OCR-7.5K-0.4SC-20/0.35M
FD200-011G-4-B	ACR-11K-0.4SAL-25/0.47M	OCR-11K-0.4SAL-25/0.28M
FD200-015G-4-B	ACR-15K-0.4SAL-35/0.36M	OCR-15K-0.4SAL-35/0.23M
FD200-018G-4-B	ACR-18.5K-0.4SAL-40/0.28M	OCR-18.5K-0.4SAL-40/0.19M

Note:

- The rated input voltage drop of input reactors is $2 \% \pm 15 \%$.
- The rated output voltage drop of output reactors is $1 \% \pm 15 \%$.
- The preceding table describes external accessories. You need to specify the ones you choose when purchasing accessories.

C. 7 Filters

C.7.1 Filter model description

Field identifier	\quad Field description
A	FLT: Name of the VFD filter series
B	Filter type P: Power input filter L: Output filter
C	Voltage class 04: AC 3PH 380V(-15\%)-440V(+10\%)
D	3-digit code indicating the rated current. For example, 015 indicates 15 A.
E	Filter performance L: General H: High-performance
F	Filter application environment A: Environment Category I (IEC61800-3) category C1 (EN 61800-3) B: Environment Category I (IEC61800-3) category C2 (EN 61800-3) C: Environment Category II (IEC61800-3) category C3 (EN 61800-3)

C.7.2 Filter model selection

Table C. 4 Filters list

VFD models	Input filter	Output filter
FD200-0R4G-S2-B	FLT-PS2010H-B	FLT-L04006L-B
FD200-0R7G-S2-B		
FD200-1R5G-S2-B	FLT-PS2025L-B	FLT-L04016L-B
FD200-2R2G-S2-B		
FD200-0R4G-2-B	FLT-P04006L-B	FLT-L04006L-B
FD200-0R7G-2-B		
FD200-1R5G-2-B	FLT-P04016L-B	FLT-L04016L-B
FD200-2R2G-2-B		
FD200-004G-2-B	FLT-P04032L-B	FLT-L04032L-B
FD200-5R5G-2-B		
FD200-7R5G-2-B	FLT-P04045L-B	FLT-L04045L-B
FD200-1R5G-4-B	FLT-P04006L-B	FLT-L04006L-B
FD200-2R2G-4-B		
FD200-004G-4-B	FLT-P04016L-B	FLT-L04016L-B
FD200-5R5G-4-B		
FD200-7R5G-4-B	FLT-P04032L-B	FLT-L04032L-B
FD200-011G-4-B		
FD200-015G-4-B	FLT-P04045L-B	FLT-L04045L-B
FD200-018G-4-B		

Note:

- The input EMI meets the C 2 requirements after an input filter is configured.
- The preceding table describes external accessories. You need to specify the ones you choose when purchasing accessories.

C. 8 Braking system

Table C. 5 Braking units and resistors

VFD models	Braking unit model	Resistance for 100\% brake torque (Ω)	Braking resistor power rating(kW)			Min. allowable brake resistance ($\Omega)$
			10% braking ratio	$\begin{gathered} 50 \% \text { braking } \\ \text { ratio } \\ \hline \end{gathered}$	80% braking ratio	
FD200-0R2G-S2-B	Built-in DBU	361	0.06	0.30	0.48	42
FD200-0R7G-S2-B		192	0.11	0.56	0.9	42
FD200-1R5G-S2-B		96	0.23	1.1	1.8	30
FD200-2R2G-S2-B		65	0.33	1.7	2.6	21
FD200-0R2G-2-B		361	0.06	0.3	0.5	131
FD200-0R7G-2-B		192	0.11	0.56	0.9	93
FD200-1R5G-2-B		96	0.23	1.1	1.8	44
FD200-2R2G-2-B		65	0.33	1.7	2.64	40
FD200-004G-2-B		36	0.6	3	4.8	33
FD200-5R5G-2-B		26	0.75	4.13	6.6	25
FD200-7R5G-2-B		19	1.13	5.6	9	13
FD200-2R2G-4-B		222	0.33	1.7	2.6	130
FD200-004G-4-B		122	0.6	3	4.8	80
FD200-5R5G-4-B		89	0.75	4.1	6.6	60
FD200-7R5G-4-B		65	1.1	5.6	9	47
FD200-011G-4-B		44	1.7	8.3	13.2	31
FD200-015G-4-B		32	2.25	11.3	18	23
FD200-018G-4-B		27	3	14	22	19

